Лабораторная работа №2

Технология формования композита на основе термопластичного связующего

Цель работы: ознакомиться с технологическим процессов получения изделий из композитов на основе углеродной ткани полотняного переплетения и термопластичной матрицы полиэтилентерефталат (лавсан).

Теоретическая часть

Технология изготовления изделия из КМ (композиционные материалы) существенно зависит от материала связующего.

Классификация КМ по материалу связующего:

- 1. Композиты на полимерной матрице
- 1.1. КМ на термопластичной матрице (может переходить из твердого состояния в вязкое и назад неограниченное количество раз);
- 1.2. КМ на термореактивной матрице (при воздействии температуры происходит необратимый переход из жидко-вязкого состояния в твердое);

При воздействии высоких температур на термореактивное связующее начинается его деструкция (разрушение межатомных связей, распад имеющихся химических соединений);

2. КМ на металлической матрице.

Классификация технологических методов изготовления изделий из КМ:

- 1. Для КМ на металлической матрице:
- инфузия (пропитка армирующего каркаса жидким металлом);
- диффузионная сварка (напыление матричного материала на волокна с последующей диффузионной сваркой получившихся слоев-полуфабрикатов между собой);
- 2. Для ПКМ на термореактивном связующем:
- «сухое» формование с использованием препрега или RTM-технологии;
- «мокрое» формование (с пропиткой волокон связующим непосредственно перед укладкой в пресс-форму или до укладки последующего слоя);
- 3. Для ПКМ на термопластичной матрице
- волоконная технология (использование комплексной нити);
- пленочная технология (реализованная в рамках данной работы);

Качество элементов конструкций из композитов существенно зависит от следующих технологических параметров:

1. Давление

- 2. Температура
- 3. Время

Давление формования должно быть таким, чтобы обеспечить требуемую плотность композита, максимально уменьшить его пористость, однако давление не должно повреждать волокна композита (например, для углеродных волокон предельное давление составляет около 2,5 МПа).

Температура формования должна быть выше температуры плавления связующего, обеспечивать необходимую текучесть (вязкость) связующего, однако одновременно с этим температура должна быть ниже температуры деструкции композитной матрицы.

Время выдержки должно обеспечивать максимальную производительность формования и, вместе с тем, отсутствие дефектов, вызванных чрезмерно быстрым охлаждением композита, таких как коробление, остаточные технологические напряжения, трещины и др.

В связи с этим **скорость охлаждения** не должна превышать 1°C в минуту. Для этого обычно композитные изделия остужают естественным образом на воздухе вместе с прессформой и печью (аналог отжига и нормализации для металлов). Быстрое охлаждение технологически недопустимо, так как в результате в композите велика вероятность образования значительных остаточных напряжений, которые могут привести к значительному короблению композитной конструкции, в результате которого нормальная эксплуатация изделия будет невозможна, или даже к разрушению в пресс-форме вследствие появления трещин в композите.

Все три параметра являются взаимосвязанными, и увеличение одного из них позволяет уменьшить другие.

Используемое оборудование для изготовления изделий из КМ

Изготовление пластинок производится на установке для прессования малогабаритных изделий в пресс-форме.

Пресс-форма для изготовления изделия представляет собой сборный узел формообразующих элементов и показана на рис. 1.

Пресс-форма позволяет изготавливать изделия в виде квадратных пластинок с размерами 150 на 150 мм в плане. Толщина получаемых пластинок зависит от толщины пакета полуфабриката и давления прессования.

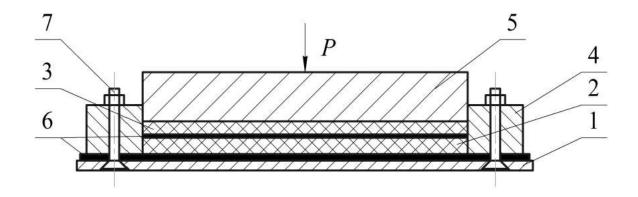


Рис. 1. Пресс-форма для изготовления плоской квадратной пластинки

1 — основание; 2 — пакет полуфабриката; 3 — уплотняющая прокладка; 4 — формообразующая деталь; 5 — пуансон; 6 — антиадгезионные прокладки; 7 — крепежные изделия.

Практическая часть

При формовании композита необходимо задаться расчетным теоретическим коэффициентом армирования $\psi_{\rm T}$ =0,6 и заданным количеством слоев армирующей ткани n=5.

Армирующей компонентом является углеродная ткань полотняного переплетения с соотношением между количеством волокон основы и утка 1:1, матричным компонентом полимерное термопластичное связующее полиэтилентерефталат или, по другому, лавсан в виде пленки.

Перед формованием композита необходимо определить количество слоев матричной пленки, которое обеспечит коэффициент армирования, близкий к заданному ранее теоретическому. Для этого надо определить массу одного слоя матричной пленки и одного слоя армирующей ткани.

Отрезаем слой лавсана и углеродной ткани в виде квадрата 150 на 150 мм, чтобы они подходили под размер пресс-формы. Далее на весах показанный на рис. 2 определяем вес одного слоя углеродной ткани и одного слоя пленки лавсана.

После измерений получились следующие значения:

масса слоя углеродной ткани $m_{\text{сл.в}} = 4,08 \text{ г};$

масса слоя лавсана $m_{\text{сл.м}} = 1,54 \text{ г};$

Слой углеродной ткани показан на рис. 3.а, слой матрицы из лавсана показан на рис. 3.б.

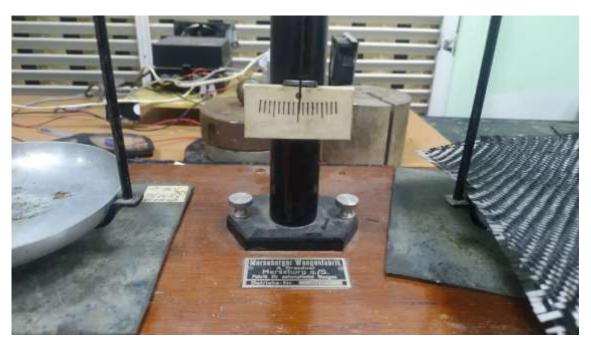


Рис. 2. Взвешивание матричного и армирующего слоев перед формованием

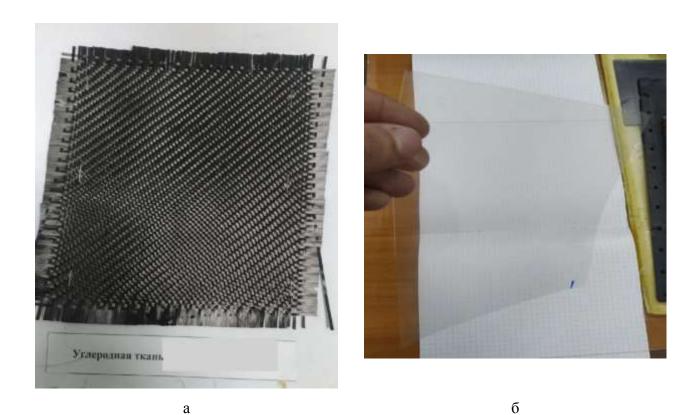


Рис. 3. Слой углеродной ткани (а) и слой матричной пленки типа лавсан (б)

Далее определяются объёмы слоев. Для этого необходимо знать плотность компонентов. Плотность лавсана $\rho_{\rm M}=1,38\div 1,4$ г/см 3 . Выбирается среднее $\rho_{\rm M}=1,39$ г/см 3 . Плотность углеродной ткани $\rho_{\rm B}=1,75$ г/см 3 .

Определяется объём всех 5 слоев армирующих волокон:

$$V_{\rm B} = \frac{m_{\rm \scriptscriptstyle CJ.B}}{\rho_{\rm \scriptscriptstyle B}} * n_{\rm \scriptscriptstyle CJ.B} = \frac{4,08}{1,75} * 5 = 11.66 \text{ cm}^3.$$

Рассчитывается объём необходимого количества матрицы:

$$V_{\rm M} = V_{\rm B} * \left(\frac{1}{\Psi} - 1\right) = 11,66 * \left(\frac{1}{0.6} - 1\right) = 7,77 \text{ cm}^3.$$

Зная необходимый объём матричного компонента, его плотность и вес одного слоя матрицы, определяется необходимое количество слоев матрицы:

$$n_{\text{сл.M}} = \frac{V_{\text{M}} * \rho_{\text{M}}}{m_{\text{сл.M}}} = 7,1 \approx 7$$

Необходимо вырезать 7 слоев пленки лавсана и 5 слоев углеродной ткани.

Реальный коэффициент армирования в этом случае составит:

$$\psi_{\rm p} = \frac{V_{_{\rm B}}}{V_{_{\rm KM}}} = \frac{V_{_{\rm B}}}{V_{_6} + V_{_{_M}}} = \frac{V_{_{\rm B}}}{V_{_6} + V_{_{CR,M}} \cdot n_{_{CR,M}}} = \frac{V_{_{\rm B}}}{V_{_6} + a \cdot b \cdot h \cdot n_{_{CR,M}}},$$

здесь a,b,h — соответственно длина, ширина и толщина одного слоя матрицы. После измерения микрометром толщина слоя матрицы составила 0,05 мм. Тогда

$$\psi_{\rm p} = \frac{V_{\rm B}}{V_{\rm g} + a \cdot b \cdot h \cdot n_{\rm crit}} = \frac{11,66}{11,66 + 15 \cdot 15 \cdot 0,005 \cdot 7} = 0,597.$$

Расчеты показывают, что в этом случае реальный коэффициент армирования ненамного отличается от теоретического (≤5%), поэтому выбранное количество слоев матрицы можно принять удовлетворительным и приступить к формованию изделия.

По технологии для удаления замасливателя нужно предварительно выдержать слои углеродной ткани в печи при температуре 300°C в течение 30 минут. Печь показана на рис. 4.

После выдержки в печи поочередно выкладываем матричную пленку и армирующую ткань в пресс-форму по схеме $M_1/a_1/M_2/a_2/M_3/a_3/M_4/a_4/M_5/a_5/M_6/M_7/$ (здесь буквами «м» и «а» обозначены слои матричной и армирующей компоненты, а нижним индексом — номер компоненты; например, M_4 — четвертый матричный слой в слоистом пакете) и закрываем ее. Далее пресс-форма ставится на пресс как показано на рис. 5.

Рис. 4. Печь для удаления замасливателя с углеродной ткани

Далее необходимо рассчитать давление, которое должен будет создавать пресс. Для этого нужно пересчитать давление в усилие на пресс-форму по формуле:

$$F_{\Pi \Phi} = p_{\Pi \Phi_{\mathrm{B}}} * a * b,$$

где a и b размеры пресс-формы. Рабочее давление в пресс-форме должно составлять $0,4\div0,5$ МПа.

$$F_{\text{n}\phi} = 0.5 * 10^6 * 0.15 * 0.15 = 11250 \text{ H}.$$

Давление на прессе определяется по эмпирической формуле с тарировочным коэффициентом:

$$P_{\Pi} = F_{\Pi \Phi} * 8,84 * 10^{-5} = 11250 * 8,84 * 10^{-5} = 0,995 \approx 1 \text{ M}\Pi a.$$

При необходимости можно воспользоваться тарировочной таблицей перевода усилия пресса в задаваемое давление (табл. 1).

Рис. 5. Пресс с установленной пресс-формой

Пресс-форма держится при давлении в 1 МПа и температуре 300 градусов и далее, оставаясь под давлением, пресс-форма охлаждается в течении 24 часов. Столь высокая температура обусловлена высокой температурой плавления лавсана (около 260°C). Столь

длительное время выдержки же обусловлено необходимостью обеспечения низкой скорости охлаждения во избежание коробления, значительных остаточных напряжений и трещин.

Таблица 1

Нагрузка, кг.	Показания манометра, МПа
0	0
50	0,05
100	0,09
150	0,13
200	0,17
250	0,22
300	0,26
400	0,35
500	0,43
600	0,52
700	0,61
800	0,69
900	0,78
1000	0,87
2000	1,74
3000	2,6
4000	3,47
5000	4,34
6000	5,21
7000	6,07
8000	6,94
9000	7,81
10000	8,68
11000	9,55
12000	10,41

Выводы

Выводы должны состоять из двух частей:

1 часть – по цели работы;

2 часть – по результатам: провести внешнею дефектоскопию полученного композита, оценить наличие неровностей поверхности, разнотолщинности, расслоений по углам плиты, сделать вывод о качестве полученного изделия, спрогнозировать количество стандартных образцов требуемого качества для механических испытаний на растяжение и изгиб, которые можно изготовить из данной плиты.

Требования к отчету:

- 1) Название и цель работы;
- 2) Краткие теоретические сведения о термопластичных и термореактивных связующих, углеродных тканях различного переплетения;
- 3) Схематичное изображение установки для формования;

- 4) Пошаговое представление операций, необходимых для изготовления композитной плиты;
- 5) Расчет необходимого усилия (давления) пресса для обеспечения требуемого уровня давления в пресс-форме;
- 6) Выводы по работе;

Контрольные вопросы:

- 1) Что такое термопласт? Что такое реактопласт?
- 2) Классификация композитов по типу применяемого связующего. Преимущества и недостатки композитов каждого типа.
- 3) Классификация методов получения изделий из композиционных материалов в зависимости от типа применяемого связующего.
- 4) Чем вызвана необходимость соблюдать столь длительную выдержку композита после формования?
- 5) Чем ограничиваются предельное давление и максимальная температура при формовании композита?
- 6) Виды дефектов изделия из КМ на основе термопластичных связующих и возможные причины их возникновения.
- 7) В чем разница между полотняным, сатиновым и саржевым переплетением армирующих тканей для КМ?