НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.Алексеева

Кафедра «Аэро-гидродинамика, прочность машин и сопротивление материалов»

Расчет прочности тонкостенного стержня открытого профиля

Методические указания к выполнению расчетно-графической работы по курсу строительной механики машин, строительной механики летательных аппаратов и курсовой работы по курсу строительной механики самолета для студентов Института Транспортных Систем (ИТС) направлений «Прикладная механика» и «Самолетостроение и вертолетостроение»

СОДЕРЖАНИЕ

		Стр
	Введение	3
1	Основные расчетные зависимости	3
2	Порядок расчета	6
3	Варианты заданий	6
4	Примеры расчета тонкостенного стержня	9

Введение

Предлагаемые методические указания предназначены для студентов факультета морской и авиационной техники при выполнении ими расчетнографической и курсовой работы по курсам: «Строительная механика машин» и «Строительная механика самолета»; содержат общие требования, задания и пример выполнения расчета прочности тонкостенного стержня открытого профиля с пояснениями и теоретическими выкладками. Тонкостенные конструкции характерны для авиации и судостроения. Теория тонкостенных стержней открытого профиля была разработана с большой полнотой В.З.Власовым, поэтому эта теория называется еще теорией Власова.

1 Основные расчетные зависимости

Дифференциальное уравнение стесненного кручения относительно Θ имеет следующий вид:

$$GI_{\hat{\mathbf{E}}}\Theta - EI_{\omega}\Theta'' = M_{\hat{\mathbf{E}}}$$

ИЛИ

$$\Theta'' - \alpha^2 \Theta = -\alpha^2 \frac{M_{\hat{e}}}{GI_{\hat{e}}}, \tag{1.1}$$

где E – модуль продольной упругости (модуль Юнга);

G — модуль сдвига;

 $I_{\rm k}$ —момент инерции сечения при кручении;

 I_{ω} - секториальный момент инерции;

$$\alpha = \sqrt{\frac{GI_{\hat{\epsilon}}}{EI_{\omega}}} \tag{1.2}$$

называется изгибно-крутильной характеристикой поперечного сечения стержня. Для стандартных прокатных профилей значения α приводятся в справочной литературе.

Момент инерции сечения при кручении определяется по формуле

$$I_{\hat{\mathbf{e}}} = \frac{1}{3} \eta \sum b_i \delta_i^3 \,, \tag{1.3}$$

где δ_i , b_i — короткие и длинные стороны прямоугольников или криволинейных элементов, из которых состоит поперечное сечение;

 η — поправочный коэффициент, зависящий от вида профиля (для уголка η = 1; для швеллера η = 1,12; для тавра η = 1,15; для двутавра η = 1,2).

Секториальный момент инерции определяется по формуле

$$I_{\omega} = \int_{A} \omega^2 dA \quad , \tag{1.4}$$

где интеграл
$$\omega = \int_{0}^{s} h ds$$
 (см²) (1.5)

называется секториальной площадью. Здесь h — расстояние от полюса до касательной к линии контура в рассматриваемой точке M, s — дуговая координата контура, отсчитываемая от начальной точки.

Общий интеграл уравнения (1.1) имеет вид

$$\Theta = C_1 \operatorname{sh} \alpha x + C_2 \operatorname{ch} \alpha x + \overline{\Theta}, \tag{1.6}$$

где C_1 и C_2 — постоянные интегрирования, определяемые из граничных условий на торцах стержня (два условия).

Частное решение $\bar{\theta}$ зависит от вида заданной нагрузки. Так, для случая, когда крутящий момент $M_{\rm K}$ по длине бруса постоянен, частное решение уравнения (1.1) имеет вид

$$\overline{\Theta} = \frac{M_{\hat{e}}}{GI_{\hat{e}}} . \tag{1.7}$$

Если стержень будет иметь несколько участков (рис. 1.1), то

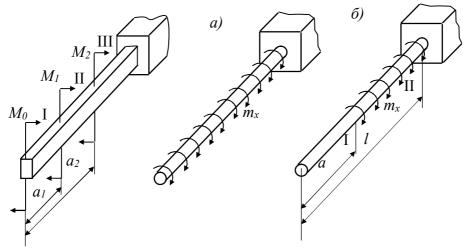


Рис.1.1 Рис.1.2

применяют метод начальных параметров, который позволяет свести число произвольных постоянных к двум [2]. Эти постоянные выражаются через так называемые начальные параметры, а именно, через относительный угол закручивания Θ_0 , бимомент B_0 и крутящий момент $M_{\rm K0}=M_0$ в начальном сечении стержня. Так как из этих трех величин две обычно известны, то задача определения постоянных сведется к решению одного уравнения с одним неизвестным. Общее уравнение метода начальных параметров имеет вид (рис. 1.1):

$$\Theta = C_1 \sinh \alpha x + C_2 \cosh \alpha x + \frac{M_0}{GI_{\hat{e}}} + \Big|_{x \ge a} \frac{M_1}{GI_{\hat{e}}} [1 - \cosh(x - a_1)] + \Big|_{x \ge a} \frac{M_2}{GI_{\hat{e}}} [1 - \cosh(x - a_2)] + \cdots$$
 (1.8)

При нагружении стержня внешним моментом, равномерно распределенным по длине (рис. 1.2 a), крутящий момент изменяется по закону $M_{\kappa} = m_x x$. В этом случае частное решение будет иметь вид:

$$\overline{\Theta} = \frac{m_{_{X}}x}{GI_{_{\hat{P}}}},\tag{1.9}$$

если же распределенный момент начинается на расстоянии a от торца (рис. $1.2~\delta$), то его представляют в виде бесконечно большого числа бесконечно малых внешних моментов, при этом по аналогии с выражением (1.8) для угла Θ получим:

$$\Theta = C_1 sh\alpha x + C_2 ch\alpha x + \Big|_{x \ge a} \int_0^{x-a} \frac{m \cdot d\xi}{GI_{\hat{e}}} \left[1 - ch\alpha (x - \xi) \right]$$

или

$$\Theta = C_1 sh\alpha x + C_2 ch\alpha x + \Big|_{x \ge a} \frac{m}{GI_{\hat{e}}} \left[(x - a) - \frac{1}{\alpha} sh\alpha (x - a) \right]. \tag{1.10}$$

После определения относительных углов закручивания определяется крутящий момент свободного кручения по формуле

$$M_{\Theta} = GI_{\hat{E}}\Theta. \tag{1.11}$$

После однократного дифференцирования выражения для относительных углов закручивания определяются бимоменты по формуле

$$B = EI_{\omega}\Theta'. \tag{1.12}$$

Бимомент B измеряется в к $H \cdot m^2$ или $H \cdot m^2$ и поскольку представляет собой внутренний силовой фактор, соответствующий самоуравновешенной системе внутренних нормальных напряжений, то не может быть найден методом сечений.

Затем вычисляется величина изгибно-крутящего момента M_{ω} по формуле [1]:

$$M_{\omega} = -\Theta'' E I_{\omega}. \tag{1.13}$$

Для опасных сечений вычисляются нормальные и касательные напряжения по формулам:

Нормальные напряжения от изгиба
$$\sigma_x = \frac{M_y}{I_y} z$$
; (1.14)

Нормальные напряжения стесненного кручения
$$\sigma_{\omega} = \frac{B}{I_{\omega}} \omega$$
; (1.15)

Касательные напряжения свободного кручения
$$\tau_{\Theta} = \frac{M_{\Theta}\delta}{I_{\hat{E}}} = G\Theta\delta$$
; (1.16)

Касательные напряжения стесненного кручения
$$\tau_{\omega} = -\frac{M_{\omega} S_{\omega}^{\text{ion}}}{I_{\omega} \delta};$$
 (1.17)

Касательные напряжения сдвига
$$\tau_{v} = -\frac{V_{z}S_{y}^{\hat{\text{tot}}}}{I_{v}\delta}$$
. (1.18)

В опасных точках опасного сечения вычисляются суммарные напряжения и затем эквивалентные по 3 теории прочности по формулам:

$$\sigma_{\Sigma} = \frac{M_{y}}{I_{v}} z + \frac{B}{I_{\omega}} \omega ; \qquad (1.19)$$

$$\tau_{\Sigma} = \tau_{\theta} + \tau_{\omega} + \tau_{V} = \frac{M_{\theta} \delta}{I_{\hat{e}}} - \frac{M_{\omega} S_{\omega}^{\hat{\text{tot}}}}{I_{\omega} \delta} + \frac{V_{z} S_{y}^{\hat{\text{tot}}}}{I_{v} \delta}. \tag{1.20}$$

2 Порядок расчета

- . Расчет тонкостенных стержней, испытывающих стесненное кручение, производят в такой последовательности:
- 1) определяют геометрические характеристики сечения, найдя предварительно центр изгиба (он же центр кручения; он же главный полюс);
- 2) составляют и решают дифференциальное уравнение относительных углов закручивания и определяют функцию Θ;
 - 3) находят крутящий момент свободного кручения по формуле (1.11) $M_{\Theta} = GI_{\kappa}\Theta$;
- 4) дифференцируют функцию Θ один раз по x, после этого находят бимомент по формуле (1.12)

$$B = EI_{\omega} \Theta'$$
;

5) дифференцируют второй раз и получают изгибно-крутящий момент по формуле (1.13)

$$M_{\odot} = -EI_{\odot} \Theta''$$
;

момент M_{ω} может быть найден также через момент M_{κ} по выражению $M_{\omega} = M_{\kappa} - M_{\Theta}$;

- 6) вычисляют нормальные и касательные напряжения по формулам (1.14), (1.15), (1.16 1.18), , а также суммарные по формулам (1.19 1.20);
 - 7) производят необходимые расчеты на прочность.

3 Варианты заданий

Для заданного поперечного сечения (рис.3.1, таблица 3.2), схемы закрепления и нагрузки тонкостенного стержня (рис.3.2, таблица 3.3) выполнить оценку его прочности, приняв $\sigma_{\rm T}$ =235 МПа, а допускаемые эквивалентные напряжения равными [σ] =0,75 $\sigma_{\rm T}$. Нагрузка приложена в плоскости стенки. Расстояние от плоскости стенки до линии центров изгиба (линии центров кручения или линии главных полюсов) c (определяется из расчета секториальных характеристик поперечного сечения).

Для этого:

- определить положения центра тяжести сечения и центра кручения;
- вычислить геометрические и секториальные характеристики поперечного сечения;
- записать решение дифференциального уравнения стесненного кручения по методу начальных параметров;
- записав граничные условия на концах стержня определить произвольные постоянные общего решения;
- используя полученное решение вычислить значения ВСФ в отдельных сечениях стержня и построить эпюры этих ВСФ (V, M_y , M_{kp} , M_{θ} , M_{ω} , B, θ , ϕ);
- определить опасные сечения, в которых определить опасные точки. Для этих точек выполнить проверку прочности по

эквивалентным напряжениям и дать заключение о прочности тонкостенного стержня.

Вариант задания выдается преподавателем.

Обозначение варианта задания состоит из варианта числовых данных для поперечного сечения тонкостенного стержня и варианта нагрузки. На основе числовых данных строится поперечное сечение профиля. Все размеры приведены по средним линиям профиля. Схема обозначения варианта задания приведена в таблице 3.1.

Таблица 3.1 Структура варианта задания

Вариант данных по сечению		Вариант нагрузки
XX	-	XX
1 - 30		1 - 30
Табл. 12-15		Табл. 11

Например: Вариант 12-09 означает, что поперечное сечение профиля соответствует схеме с числовыми данными по варианту 12 в табл.3.2, вариант нагрузки соответствует варианту 9 таблицы 3.

Нагрузки по таблице 3.3 определяются следующим образом : Распределенные нагрузки определяются по формуле

$$q_i = k_i \cdot q_0$$
, где $i = 1, 2, 3, 4$.

Сосредоточенные нагрузки определяются по формуле

$$P_i = m_i \cdot P_0$$
, где $i=1$, 2, 3, 4, а $P_0 = q_0 \cdot l \cdot m$.

Сосредоточенный момент определяется по формуле $M_1 = n_1 \cdot M_0$, где $M_0 = q_0 \cdot l^2 \cdot n$ или $M_1 = n_1 \cdot q_0 \cdot l^2 \cdot n$.

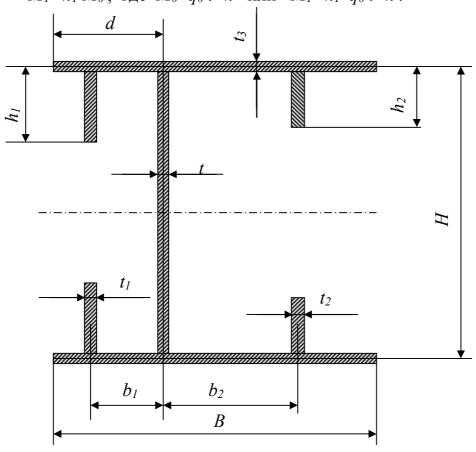


Рисунок 3.1 - Поперечное сечение тонкостенного стержня (при взгляде в направлении оси x)

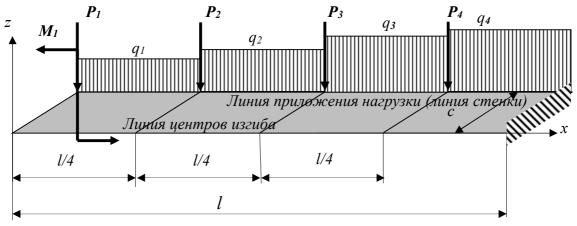


Рисунок 3.2 - Расчетная схема консольного тонкостенного стержня

Таблица 3.2 Варианты поперечного сечения стержня (сечение по рис.3.1)

Donry					Размеры поперечного сечения, мм							
Вари	4	1	ны, мм	4	77		•	-			لہ	
ант	t	t_1	t_2	<i>t</i> ₃	H 240	B 120	h_1	h_2	b_1	b_2	d	
1	4	0	0	4	240	120	0	0	0	0	0	
2	5	0	0	5	260	120	0	0	0	0	120	
3	5	0	0	5	280	160	0	0	0	0	40	
4	6	0	0	6	300	160	0	0	0	0	120	
5	6	0	6	6	320	180	0	50	0	90	90	
6	4	4	0	4	200	100	40	0	50	0	50	
7	3	0	3	3	180	100	0	50	0	100	0	
8	3	3	0	3	160	100	50	0	100	0	100	
9	3	0	3	3	140	100	0	40	0	50	0	
10	3	3	0	3	120	100	40	0	50	0	100	
11	4	0	0	4	200	120	0	0	0	0	0	
12	4	0	0	4	210	100	0	0	0	0	100	
13	5	0	0	5	220	140	0	0	0	0	40	
14	5	0	0	5	230	120	0	0	0	0	80	
15	5	0	5	5	240	140	0	50	0	70	70	
16	4	4	0	4	250	120	50	0	60	0	60	
17	5	0	5	5	260	120	0	60	0	120	0	
18	6	6	0	6	270	100	60	0	100	0	100	
19	6	0	6	6	280	120	0	50	0	60	0	
20	6	6	0	6	300	120	50	0	60	0	120	
21	3	0	0	3	120	80	0	0	0	0	0	
22	3	0	0	3	140	90	0	0	0	0	90	
23	3	0	0	3	160	100	0	0	0	0	20	
24	4	0	0	4	280	140	0	0	0	0	100	
25	5	0	0	5	270	140	0	0	0	0	40	
26	5	0	5	5	260	130	0	40	0	110	20	
27	4	0	4	4	240	130	0	30	0	80	30	
28	5	0	5	5	280	180	0	40	0	60	30	
29	5	5	0	5	250	150	30	0	50	0	100	
30	5	5	0	5	270	120	30	0	30	0	90	
31	5	0	5	5	260	120	0	60	0	120	0	

Таблица 3.3 Варианты длины стержня и его нагрузки (схема нагрузки по рис.3.2)

Вариант	l, м	<i>q₀,</i> кН/м	m	n	$m_1 = P_1/P_0$	$m_2 = P_2/P_0$	$m_3 = P_3/P_0$	$m_4 = P_4/P_0$	$k_1 = q_1/q_0$	$k_2 = q_2/q_0$	$k_3 = q_3/q_0$	$k_4 = q_4/q_0$	$n_1 = M_1 / M_0$
1	2	5	1	1	0	3	0	0	1	2	-2	-4	-1
2	2,4	2	1	1	0	-1	0	0	2	2	2	2	0
3	1,6	2	1	1	-2	0	0	0	3	3	3	3	0
4	1,8	2	1	1	3	0	3	0	0	0	0	0	1
5	1,4	2	1	1	0	2	0	4	0	0	0	0	-2
6	2,2	2	1	1	0	0	0	0	2	2	2	4	0
7	2,4	2	1	1	3	3	0	0	0	0	0	0	0
8	1,2	2	1	1	0	0	0	0	2	2	3	5	0
9	2	2	1	1	0	0	0	0	0	2	2	2	-1
10	2,16	2	1	1	0	0	0	0	1	1	1	1	0
11	2,28	2	1	1	2	2	-2	-2	0	0	0	0	0
12	2,52	2	1	1	-3	-1	2	4	0	0	0	0	0
13	2,64	2	1	1	0	0	0	0	1	2	3	4	0
14	2,8	2	1	1	0	0	0	0	-2	-2	-2	-2	3
15	1,32	2	1	1	2	0	0	0	-3	-3	-3	-3	0
16	1,42	2	1	1	0	0	0	-4	4	3	0	0	0
17	1,76	2	1	1	0	0	0	0	4	4	2	2	0
18	1,84	2	1	1	4	0	0	4	0	0	0	0	0
19	1,68	2	1	1	3	3	0	0	0	0	0	0	0
20	2,12	2	1	1	3	0	6	0	0	0	0	0	0
21	2,88	2	1	1	0	0	0	0	2	2	2	0	0
22	2,48	2	1	1	0	2	2	0	0	0	0	0	-4
23	2,44	2	1	1	0	0	0	0	4	4	-2	-2	0
24	1,88	2	1	1	0	-3	0	2	0	0	0	0	2
25	1,28	2	1	1	0	0	0	0	4	3	2	1	0
26	1,72	2	1	1	1	0	0	0	1	1	1	1	-2
27	2,08	2	1	1	0	0	0	0	0	0	0	5	1
28	2,04	2	1	1	2	0	4	0	0	0	0	0	0
29	1,92	2	1	1	0	0	0	0	0	0	2	2	0
30	2,0	2	1	1	0	0	-2	0	1	1,5	0	0	-0,5

4 Примеры расчета тонкостенного стержня

4.1 Пример №1 (вариант 31-30).

4.1.1 Исходные данные

Расчет выполнен по варианту 31-30. Размеры элементов сечения приведены в таблице 4.1.

Таблица 4.1 Исходные данные поперечного сечения из таблицы 3.2

Вариант		Толщи	ны, мм			Размеры поперечного сечения, мм							
Бариант	t	t_1	t_2	t ₃	Н	В	h_1	h_2	b_1	b_2	d		
31	5	0	5	5	260	120	0	60	0	120	0		

Используя данные таблицы 4.1, рис. 3.1 преобразуется к виду, указанному на рисунке 4.1. Обозначения характерных точек сечения показаны на рис. 4.2.

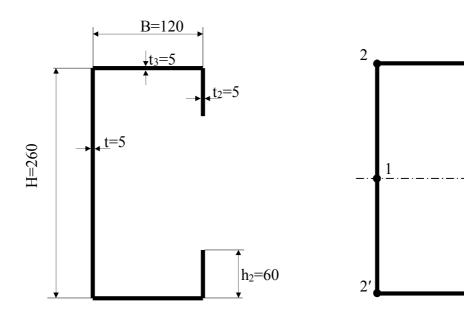


Рисунок 4.1- Поперечное сечение профиля

Рисунок 4.2- Обозначения точек сечения

Данные по нагрузке, соответствующие варианту 30 приведены в таблице 4.2. Таблица 4.2 Исходные данные по нагрузке

Вариант	l, м	<i>q</i> 0, кН/м	m	n	$m_1 = P_1/P_0$	$m_2 = P_2/P_0$	$m_3 = P_3/P_0$	$m_4=P_4/P_0$	$k_1 = q_1/q_0$	$k_2 = q_2/q_0$	$k_3 = q_{3/q_0}$	$k_4 = q_4/q_0$	$n_1 = M_1 / M_0$
30	2,0	2	1	1	0	0	-2	0	1	1,5	0	0	-0,5

Нагрузки по таблице 3.3 определяются следующим образом :

Распределенные нагрузки

$$q_1 = k_1 \cdot q_0 = 1 \cdot 2 = 2 \kappa H/M;$$

 $q_2 = k_2 \cdot q_0 = 1, 5 \cdot 2 = 3 \kappa H/M;$
 $q_3 = q_4 = 0 \kappa H/M;$

Сосредоточенные нагрузки

$$P_0 = q_0 \cdot l \cdot m = 2 \cdot 2, 0 \cdot l = 4 \text{ KH}, P_3 = m_3 \cdot P_0 = -2 \cdot 4 = -8 \text{ KH} P_1 = P_2 = P_4 = 0,$$
.

Сосредоточенный момент определяется по формуле

$$M_I = n_I \cdot q_0 \cdot l^2 \cdot n = (-0.5) \cdot 2 \cdot 2.0^2 \cdot I = -4 \text{ } \kappa H_M.$$

Расчетная схема стержня примет вид, показанный на рис.4.3 (направление нагрузок указано на схеме с учетом полученных знаков).

4.1.2 Определение центра тяжести сечения

Площадь сечения: $A = H \cdot t + 2Bt_3 + 2ht_2 = 26 \cdot 0.5 + 2 \cdot 12 \cdot 0.5 + 2 \cdot 6 \cdot 0.5 = 31.0$ ñì².

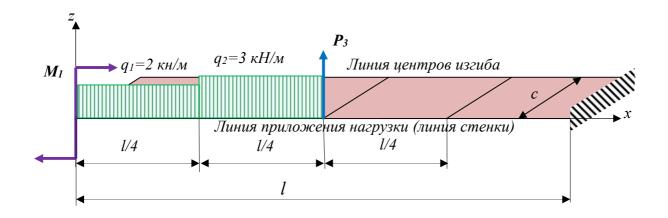


Рисунок 4.3 Схема нагружения тонкостенного стержня

Координата центра тяжести (при расположении оси сравнения в центре тяжести стенки):

$$y_c = \frac{2(B \cdot t_3 \cdot B/2) + 2(h \cdot t_2 \cdot B)}{A} = \frac{2(12 \cdot 0.5 \cdot 12/2) + 2(6 \cdot 0.5 \cdot 12)}{31.0} = 4.548 \quad \text{ñi} .$$

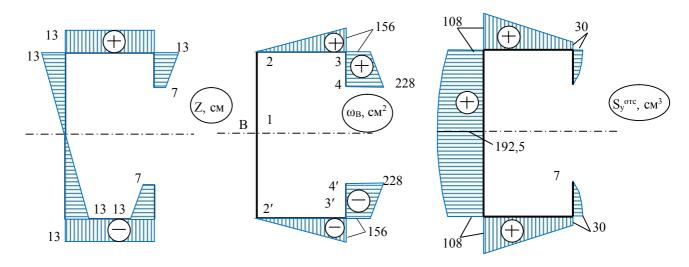


Рисунок 4.4 – Эпюра координаты z

Рисунок 4.5 – Эпюра вспомогательной секториальной площади ω_{B}

Рисунок 4.6 – Эпюра статического момента

4.1.3 Определение осевого момента инерции Іу

Для данного сечения строим эпюру координаты z (рис.4.4). Момент инерции вычисляется способом Верещагина, умножая эпюру z «саму на себя».

$$I_{y} = \int_{A} z^{2} dA = 2 \cdot 0, 5 \cdot \left[\left(\frac{1}{2} \cdot 13 \cdot 13 \right) \cdot \frac{2}{3} \cdot 13 + \left(13 \cdot 12 \right) \cdot 13 + \frac{5}{6} \left(2 \cdot 13^{2} + 2 \cdot 7^{2} + 7 \cdot 13 + 13 \cdot 7 \right) \right] = 3378 \quad \tilde{m} i^{4} = 10.$$

4.1.4 Определение отсеченного статического момента S_y для характерных точек контура

Статический момент относительно оси y для характерных точек сечения определяем по формуле $S_y^{\text{orc}} = \int_0^s z dA$.

Для вычисления используем правило Верещагина при вычислении интеграла по эпюре z.

$$S_y^{(4)}=0;$$
 $S_y^{(3)}=rac{z_3+z_4}{2}\cdot h_2.t_2=rac{13+7}{2}\cdot 6,0\cdot 0,5=30,0\ \mathrm{cm}^3$; $S_y^{(2)}=S_y^{(3)}+rac{H}{2}\cdot B\cdot t_3=30,0+rac{26}{2}\cdot 12,0\cdot 0,5=108,0\ \mathrm{cm}^3$; $S_y^{(1)}=S_y^{(2)}+rac{H}{2}\cdot rac{H}{2}\cdot t=108,0+rac{26}{2}\cdot rac{26}{2}\cdot 0,5=192,5\ \mathrm{cm}^3$. По результатам расчета строим эпюру S_y^{orc} , приведенную на рисунке 4.6.

4.1.5 Определение положения главного полюса

Для определения положения главного выбираем полюса вспомогательный полюс B. Вычисляем секториальные площади ω_B относительно выбранного полюса и строим эпюру вспомогательной секториальной площади (рис.4.5). ω_B Для симметричного рекомендуется выбирать полюс B в точке пересечения оси симметрии с контуром поперечного сечения.

$$\omega_{A1} = \omega_{A2} = 0$$

$$\omega_{A3} = B \cdot \frac{H}{2} = 12 \cdot \frac{26}{2} = 156 \text{ ni}^{2}$$

$$\omega_{A3} = \omega_{A2} + h_2 \cdot B = 156 + 6 \cdot 12 = 228$$
 ñì ²

Центробежный секториальный момент инерции вычисляем способом Верещагина, умножив эпюру z на эпюру ω_B

$$I_{y\omega\hat{A}} = \int_{A} z\omega_{\hat{A}} dA = 2 \cdot 0.5 \cdot \left[\left(\frac{1}{2} \cdot 156 \cdot 12 \right) \cdot 13 - \frac{6}{6} \left(2 \cdot 228 \cdot 7 + 2 \cdot 156 \cdot 13 + 13 \cdot 228 + 156 \cdot 7 \right) \right] = 23472 \quad \tilde{m}i^{-4}.$$

Определение координат главного полюса

$$y_A - y_B = -\frac{J_{yoB}}{J_y} = -\frac{23472}{3378} = -6,948$$
 ñì - относительно стенки сечения.

4.1.6 Определение главных секториальных площадей

Для вычисления главных секториальных площадей используем формулу $\omega_i = \omega_{B_i} + z_i \cdot (y_A - y_B)$

Результаты вычислений приведены в таблице 4.3

Таблица 4.3

Номера точек	ω_{Bi} ,	, cm ²	z_i , CM	<i>у</i> _А -у _В см	ω_i , cm ²
1	ω_{B1}	0	0,0	-6,948	0
2	ω_{B2}	0	13,0	-6,948	-90,32
3	ωвз	156	13,0	-6,948	65,68
4	ω_{B4}	228	7,0	-6,948	179,4

Эпюра главных секториальных площадей, построенная по приведенным в таблице 4.3 значениям приведена на рис.4.7.

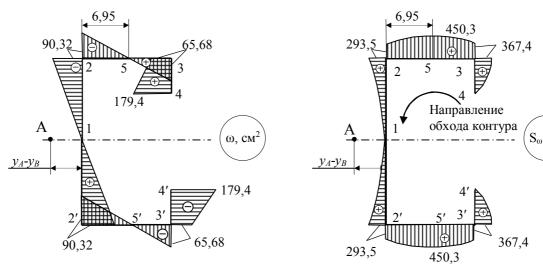


Рисунок 4.7 - Эпюра главной секториальной площади

Рисунок 4.8 - Эпюра секториального статического момента

4.1.7 Определение секториального статического момента

Для вычисления секториальных статических моментов направление обхода принимаем против часовой стрелки от точки 4 контура

$$\begin{split} S_{\omega} &= \int_{A} \omega dA \;, \quad S_{\omega 4} = 0 \;, \quad S_{\omega 3} = t_2 \cdot \Omega_{4-3} = 0, 5 \cdot \frac{179,27+65,68}{2} \cdot 6 = 367,4 \quad \text{ñi} \quad ^4 \;, \\ S_{\omega 2} &= S_{\omega 3} + t_3 \cdot \Omega_{3-2} = 367, 4+0, 5 \cdot \frac{-90,32+65,68}{2} \cdot 12 = 293,5 \quad \text{ñi} \quad ^4 \;, \\ S_{\omega 1} &= S_{\omega 2} + t \cdot \Omega_{2-1} = 293, 5-0, 5 \cdot \frac{90,32\cdot13}{2} = -0,04 \quad \text{ñi} \quad ^4 \;, \\ S_{\omega 5} &= S_{\omega 3} + t_3 \cdot \Omega_{3-5} = 367, 4+0, 5 \cdot \frac{65,68 \cdot \left(12-6,95\right)}{2} = 450,3 \quad \text{ñi} \quad ^4 \;. \end{split}$$

По полученным значениям строим эпюру секториальных статических моментов, которая приведена на рис.4.8.

4.1.8 Определение секториального момента инерции

Секториальный момент инерции вычисляем способом Верещагина, умножив эпюру ω «саму на себя»

$$J_{\omega} = \int_{A} \omega^{2} dA = 2 \cdot 0.5 \cdot \left[\left(\frac{1}{2} \cdot 90.32 \cdot 13 \right) \cdot \frac{2}{3} \cdot 90.32 + \left(\frac{1}{2} \cdot 90.32 \cdot 6.95 \right) \cdot \frac{2}{3} \cdot 90.32 + \left(\frac{1}{2} \cdot 65.68 \cdot 5.05 \right) \cdot \frac{2}{3} \cdot 65.68 + \left(\frac{1}{2} \cdot 65.68 \cdot 179.4 \cdot 2 \right) \right] = 158040 \quad \text{ñi} \quad 6.$$

4.1.9 Определение момента инерции при кручении

$$J_k = \frac{1}{3} \sum_i S_i \cdot t_i^3 = \frac{1}{3} \cdot \left(H \cdot t^3 + 2 \cdot B \cdot t_3^3 + 2 \cdot h_2 \cdot t_2^3 \right) = \frac{1}{3} \left(26 + 2 \cdot 12 + 2 \cdot 6 \right) \cdot 0,5^3 = 2,58 \quad \text{ñi} \quad ^4.$$

4.1.10 Определение изгибно-крутильной характеристики

$$\alpha = \sqrt{\frac{G \cdot J_k}{E \cdot J_m}} = \sqrt{\frac{0.78 \cdot 10^5 \cdot 2.58}{2 \cdot 10^5 \cdot 158040}} = 2.52 \cdot 10^{-3} \quad \frac{1}{\tilde{n}\tilde{i}} = 0.252 \frac{1}{\tilde{i}}.$$

4.2 Составление и решение дифференциального уравнения относительного угла закручивания

4.2.1 Разбиение схемы нагружения

Общую схему нагружения представим в виде отдельных расчетных схем при изгибе и кручении.

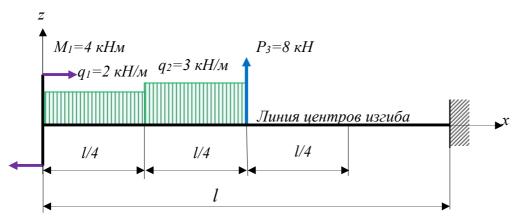


Рисунок 4.9 Схема нагружения при изгибе

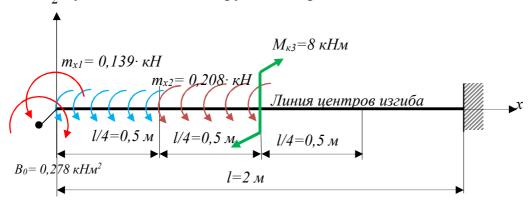


Рисунок 4.10 Схема нагружения при кручении

Расчетная схема при изгибе приведена на рис.4.9, а при кручении на рис. 4.10. Вычислим расчетные нагрузки при кручении:

Расстояние от плоскости нагрузки до линии центров кручения по абсолютной величине равно $c = |y_A - y_B| = |-6,948|$ $\tilde{n}i = 6,95$ $\tilde{n}i = 0,0695i$.

Интенсивность крутящего момента на первом участке $m_{xl} = q_l \cdot c = 2 \cdot 0,0695 = 0,139 \text{ кH};$

на втором участке

 $m_{x2} = q_2 \cdot c = 3.0,0695 = 0,208 \text{ } \kappa H;$

на третьем и четвертом участке

 $m_{x3} = m_{x4} = 0.$

Сосредоточенные крутящие моменты равны

 $M_{\kappa I} = M_{\kappa 2} = M_{\kappa 4} = 0; \quad M_{\kappa 3} = P_3 \cdot c = 8 \cdot 0,0695 = 0,556 \text{ кHm}.$

Сосредоточенный бимомент $B_0 = M_1 \cdot c = 4 \cdot 0,0695 = 0,2779 \, \hat{e} \hat{h}^2$

4.2.2 Решение дифференциального уравнения стесненного кручения по методу начальных параметров

Для данной нагрузки решение будет иметь вид

$$\begin{split} \theta &= C_1 \cdot sh\alpha x + C_2 \cdot ch\alpha x + \frac{m_{x1} \cdot \tilde{o}}{G \cdot J_K} - \frac{1}{x \geq \frac{l}{4}} \left[\left(x - \frac{l}{4} \right) - \frac{1}{\alpha} sh\alpha \left(x - \frac{l}{4} \right) \right] + \\ &+ \frac{1}{x \geq \frac{l}{4}} \left[\left(x - \frac{l}{4} \right) - \frac{1}{\alpha} sh\alpha \left(x - \frac{l}{4} \right) \right] - \frac{1}{x \geq \frac{l}{2}} \left[\left(x - \frac{l}{2} \right) - \frac{1}{\alpha} sh\alpha \left(x - \frac{l}{2} \right) \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] \right] - \frac{1}{x \geq \frac{l}{2}} \left[\frac{M_{k3}}{G \cdot I_K} \left[\frac{M_{k$$

Производная относительного угла закручивания

$$\begin{aligned} \theta' &= C_1 \cdot \alpha \cdot ch\alpha x + C_2 \cdot \alpha \cdot sh\alpha x + \frac{m_{x1}}{G \cdot J_K} - \frac{m_{x1}}{G \cdot J_K} \left[1 - ch\alpha \left(x - \frac{l}{4} \right) \right] + \frac{m_{x2}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{4} \right) \right] - \frac{m_{x2}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left(x - \frac{l}{2} \right) \right] + \frac{m_{x3}}{\left| G \cdot I_K \right|} \left[1 - ch\alpha \left($$

4.2.3 Граничные условия

Из граничных условий определим значения произвольных постоянных **При х=0** бимомент равен $B_1 = 0,2779 \ e\hat{h}^2 = EI_{\omega}\theta'$. Откуда относительный угол закручивания будет равен $\theta' = \frac{B_1}{F \cdot I}$.

$$\frac{B_{_{1}}}{E\cdot J_{_{\varpi}}} = \alpha \tilde{N}_{_{1}} + \frac{m_{_{x1}}}{G\cdot J_{_{K}}} \;\; \text{откуда} \;\; \tilde{N}_{_{1}} = -\frac{m_{_{x1}}}{\alpha\cdot G\cdot J_{_{K}}} \bigg(1 - \frac{B\alpha^{^{2}}}{m_{_{x1}}}\bigg).$$

Величина $G \cdot I_{\scriptscriptstyle k} = 0.78 \cdot 10^{\scriptscriptstyle 5} \cdot 10^{\scriptscriptstyle 3} \cdot 2.58 \cdot 10^{\scriptscriptstyle -8} = 2.015 \, \hat{e} \acute{I} \hat{i}^{\scriptscriptstyle -2}$, величина $E \cdot I_{\scriptscriptstyle \omega} = 2.0 \cdot 10^{\scriptscriptstyle 5} \cdot 10^{\scriptscriptstyle 3} \cdot 158040 \cdot 10^{\scriptscriptstyle -12} = 31.61 \, \hat{e} \acute{I} \hat{i}^{\scriptscriptstyle -4}$

Тогда
$$\tilde{N}_1 = -\frac{0,\!139}{0,\!252 \cdot 2,\!015} \left(1 - \frac{0,\!2779 \cdot 0,\!252^2}{0,\!139} \right) = -0,\!238 \frac{1}{i}$$
.

При x=l относительный угол закручивания равен нулю, то есть $\theta = 0$

$$0 = C_{1} \cdot sh\alpha l + C_{2} \cdot ch\alpha l + \frac{m_{x1} \cdot l}{G \cdot J_{K}} - \frac{m_{x1}}{G \cdot J_{K}} \left[\left(\frac{3l}{4} \right) - \frac{1}{\alpha} sh\alpha \left(\frac{3l}{4} \right) \right] + \frac{m_{x2}}{G \cdot I_{K}} \left[\left(\frac{3l}{4} \right) - \frac{1}{\alpha} sh\alpha \left(\frac{3l}{4} \right) \right] - \frac{m_{x2}}{G \cdot I_{V}} \left[\left(\frac{l}{2} \right) - \frac{1}{\alpha} sh\alpha \left(\frac{l}{2} \right) \right] - \frac{M_{k3}}{G \cdot I_{V}} \left[1 - ch\alpha \left(\frac{l}{2} \right) \right]$$

Вычислим входящие в выражение величины

$$sh \alpha l = sh(0,252 \cdot 2,0) = 0,5266$$

 $ch \alpha l = ch(0,252 \cdot 2,0) = 1,1302$

$$sh\alpha\left(\frac{3l}{4}\right) = sh\left[0.252\left(\frac{3\cdot2.0}{4}\right)\right] = 0.3878$$

$$ch\alpha\left(\frac{3l}{4}\right) = ch\left[0.252\left(\frac{3\cdot2.0}{4}\right)\right] = 1,073$$

$$sh\alpha\left(\frac{l}{2}\right) = sh\left[0.252\left(\frac{2.0}{2}\right)\right] = 0.2551$$

$$ch\alpha\left(x - \frac{l}{2}\right) = ch\left[0,252\left(\frac{2,0}{2}\right)\right] = 1,032$$

$$0 = -0.238 \cdot 0.5266 + C_2 \cdot 1.130 + \frac{0.139 \cdot 2.0}{2.015} - \frac{0.139}{2.015} \left[\left(\frac{3 \cdot 2.0}{4} \right) - \frac{1}{0.252} 0.3878 \right] + \frac{0.208}{2.015} \left[\left(\frac{3 \cdot 2.0}{4} \right) - \frac{1}{0.252} 0.3878 \right] - \frac{0.208}{2.015} \left[\left(\frac{2.0}{2} \right) - \frac{1}{0.252} 0.2551 \right] - \frac{0.556}{2.015} \left[1 - 1.032 \right]$$

Откуда C_2 =-0,0187 1/м.

Выражение для θ

$$\theta = -0.238 \cdot sh\alpha x - 0.0187 \cdot ch\alpha x + 0.069x - \frac{1}{x \ge 0.5} [0.069[(x - 0.5) - 3.968 \cdot sh\alpha(x - 0.5)] + \frac{1}{\alpha} sh\alpha(x - 0.5) - 3.968sh\alpha(x - 0.5)] - \frac{1}{x \ge 0.5} [0.1034[(x - 0.5) - 3.968sh\alpha(x - 0.5)] - \frac{1}{\alpha} sh\alpha(x - 1)] - \frac{1}{\alpha} sh\alpha(x - 1)] - \frac{1}{\alpha} sh\alpha(x - 1) - \frac{1}{\alpha} sh\alpha(x - 1)]$$

После упрощения получим

$$\theta = -0.238 \cdot sh\alpha x - 0.0187 \cdot ch\alpha x + 0.069x - \frac{1}{x \ge 0.5} [0.0344[(x - 0.5) - 3.968 \cdot sh\alpha(x - 0.5)] - \frac{1}{x \ge 1} [0.1034[(x - 1) - 3.968 \cdot sh\alpha(x - 1)] - \frac{1}{x \ge 1} [0.2758[1 - ch\alpha(x - 1)]]$$

$$(4.1)$$

Производная от относительного угла закручивания

$$\theta' = -0.238 \cdot 0.252 \cdot ch\alpha x + 0.0187 \cdot 0.252 \cdot sh\alpha x + 0.069 - 0.069 \left[1 - ch\alpha(x - 0.5)\right] + 0.008 \left[1 - ch\alpha(x - 0.5)\right] - 0.008 \left[1 - ch\alpha(x - 0.5)\right] - 0.008 \left[1 - ch\alpha(x - 0.5)\right] + 0.008 \left[1 - ch\alpha(x - 0.5)\right] - 0.008 \left[1 - ch\alpha(x - 0.5)\right] - 0.008 \left[1 - ch\alpha(x - 0.5)\right] + 0.008 \left[1 - ch\alpha(x - 0.5)\right] - 0.008 \left[1$$

После упрощения получим

$$\theta' = -0.0602 \cdot ch\alpha x - 0.00471 \cdot sh\alpha x + 0.069 - \frac{1}{x \ge 0.5} |0.0344[1 - ch\alpha(x - 0.5)] - \frac{1}{x \ge 1} |0.1034[1 - ch\alpha(x - 1)] + \frac{1}{x \ge 1} |0.2758sh\alpha(x - 1)|$$

$$(4.2)$$

4.2.4 Вычисление ВСФ

Выражение для срезывающей силы

$$V(x) = q_1 x + \sum_{x \ge \frac{l}{4}} \left| (q_2 - q_1) \left(x - \frac{l}{4} \right) - \sum_{x \ge \frac{l}{2}} \left| (q_2 - q_1) \left(x - \frac{l}{2} \right) - \sum_{x \ge \frac{l}{2}} \left| P_3 \right| \right|.$$
 (4.3)

Выражение для изгибающего момента

$$M(x) = \frac{1}{2} q_1 x^2 + \sum_{x \ge \frac{l}{4}} \left| \frac{1}{2} \left(q_2 - q_1 \left(x - \frac{l}{4} \right)^2 - \sum_{x \ge \frac{l}{2}} \left| \frac{1}{2} \left(q_2 - q_1 \left(x - \frac{l}{2} \right)^2 - \sum_{x \ge \frac{l}{2}} \left| P_3 \left(x - \frac{l}{2} \right) \right| \right) \right|$$
(4.4)

Выражение для бимомента

$$B = EI_{\omega}\theta' = -1,902 \cdot ch\alpha x - 0,149 \cdot sh\alpha x + 0,0939 - \frac{1}{x \ge \frac{1}{4}} [0,468[1 - ch\alpha(x - 0,5)] - \frac{1}{x \ge \frac{1}{2}} [1,407[1 - ch\alpha(x - 1)] + \frac{1}{x \ge \frac{1}{2}} [3,754sh\alpha(x - 1)]$$

$$(4.5)$$

Выражение для момента свободного кручения

$$M_{\theta} = GI_{k}\theta = -0.48 \cdot sh\alpha x - 0.0376 \cdot ch\alpha x + 0.139x - \frac{1}{x \ge \frac{1}{4}} |0.0693[(x - 0.5) - 3.968 \cdot sh\alpha(x - 0.5)] - \frac{1}{4} |0.0693[(x - 0.5) - 3.968 \cdot sh\alpha(x - 0.5)] - \frac{1}{4} |0.0693[(x - 0.5) - 3.968 \cdot sh\alpha(x - 0.5)]|$$

$$-\frac{1}{x \ge \frac{l}{2}} |0,208| (x-1) - \frac{1}{\alpha} sh \alpha (x-1) - \frac{1}{\alpha} sh \alpha (x-1) | -\frac{l}{x \ge \frac{l}{2}} |0,556[1 - ch\alpha (x-1)]$$
(4.6)

Выражение для крутящего момента

$$M_{k} = m_{x1}x + \sum_{x \ge \frac{l}{4}} \left| \left(m_{x2} - m_{x1} \right) \left(x - \frac{l}{4} \right) - \sum_{x \ge \frac{l}{2}} \left| \left(m_{x2} - m_{x1} \right) \left(x - \frac{l}{2} \right) - \sum_{x \ge \frac{l}{2}} \left| M_{k3} \right| \right|$$

$$(4.7)$$

Изгибно-крутящий момент определяется по выражению

$$M_{\omega} = M_k - M_{\theta} \tag{4.8}$$

Угол закручивания сечения

$$\varphi = \int \theta dx + D = -0.944 \cdot ch\alpha x - 0.074 \cdot sh\alpha x + 0.0345 \cdot x^{2} - \frac{1}{x \ge 0.5} |0.0172[(x - 0.5)^{2} - 31.38 \cdot ch\alpha (x - 0.5)] - \frac{1}{x \ge 1} |0.0517[(x - 1)^{2} - 31.38 \cdot sh\alpha (x - 1)] - \frac{1}{x \ge 1} |0.2758[(x - 1) - ch\alpha (x - 1)] + D$$

$$(4.9)$$

Произвольную постоянную D определим из граничного условия: при x=l $\varphi=0$. После подстановки и всех вычислений получим D=-0,117 рад.

Разделив всю длину балки на 8 частей, вычислим для каждой координаты x значения ВСФ по формулам (4.1) – (4.9). Вычисленные значения ВСФ приведены в таблице 4.4, а эпюры, построенные по этим значениям приведены на рис. 4.10. Из анализа эпюр определяем, что опасным сечением является сечение при x=l=2 м. Для этого сечения ВСФ равны: $V_z=5,5\,$ кH, $M_v=8,375\,$ кHм, $B=0,539\,$ кHм², $M_\theta=0\,$ кHм, $M_\omega=0,3821\,$ кHм.

Таблица 4.4 Расчет значений ВСФ

Попометры					х, м				
Параметры	0	0,25	0,5	0,75	1	1,25	1,5	1,75	2
ax	0	0,0631	0,1262	0,1893	0,2524	0,3155	0,3786	0,4418	0,5049
sh(ax)	0	0,063	0,127	0,190	0,255	0,321	0,388	0,456	0,5266
ch(ax)	1	1,002	1,008	1,018	1,032	1,050	1,073	1,099	1,1302
$sh\alpha(x-0,5)$	0	0	0	0,063	0,127	0,190	0,255	0,321	0,3878
shα(x-1)	0	0	0	0	0	0,063	0,127	0,190	0,2551
cha(x-0,5)	1	1	1	1,002	1,008	1,018	1,032	1,050	1,073
cha(x-1)	1	1	1	1	1	1,002	1,008	1,018	1,0320
θ, рад/м	-0,0187	-0,0165	-0,0145	-0,0127	-0,0112	-0,0095	-0,0070	-0,0039	0,0000
θ' , рад/м ²	0,0088	0,0084	0,0077	0,0067	0,0054	0,0082	0,0111	0,0141	0,0171
$M_{ heta}$, кНм	-0,0376	-0,0333	-0,0292	-0,0256	-0,0225	-0,0191	-0,0142	-0,0078	0,0000
$B, \kappa H m^2$	0,278	0,265	0,244	0,213	0,170	0,261	0,352	0,445	0,539
Мк, кНм	0,0000	0,0347	0,0695	0,1216	<u>0,1737</u> -0,3821	-0,3821	-0,3821	-0,3821	-0,3821
M_{ω} , к H м	0,0376	0,0680	0,0987	0,1472	<u>0,1962</u> -0,3596	-0,3631	-0,3679	-0,3743	-0,3821
φ·10 ³ , рад	21,190	16,794	12,920	9,526	6,552	3,960	1,883	0,502	0,000
V _z , κH	0,000	0,500	1,00	1,75	<u>2,50</u> -5,50	-5,50	-5,50	-5,50	-5,50
Му, кНм	-4,000	-3,938	-3,750	-3,406	-2,875	-4,250	-5,625	-7,000	-8,375

Из анализа эпюр определяем, что опасным сечением является сечение при x=l=2 м. Для этого сечения ВСФ равны: $V_z=5,5\,$ кH, $M_y=8,375\,$ кHм, $B=0,539\,$ кHм $^2,~M_0=0\,$ кHм, $M_\omega=0,3821\,$ кHм.

Нормальные напряжения от изгиба по формуле (1.14) равны $\sigma_{\mathrm{x}i} = \frac{_{M_y}}{_{I_y}} z_i = \frac{_{0,539\cdot 10^{-3}}}{_{3378\cdot 10^{-8}}} z_i \cdot 10^{-2} = 2,479 \cdot z_i \ M\Pi a,$ где z_i в см.

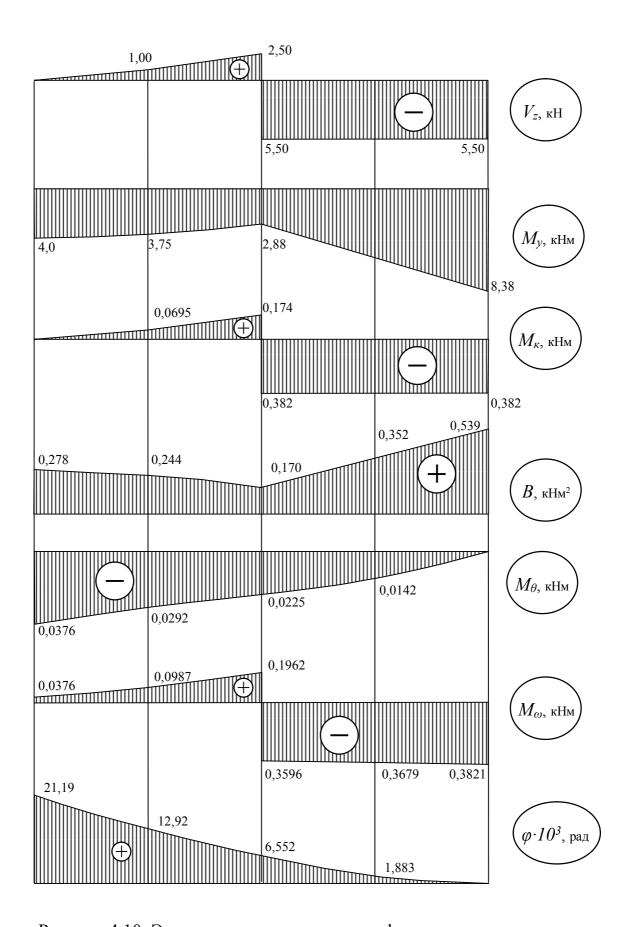


Рисунок 4.10 Эпюры внутренних силовых факторов Нормальные напряжения стесненного кручения по формуле (1.15) для

точек контура равны

$$\sigma_{\omega i} = \frac{B}{I_{\omega}} \omega_i = \frac{8,375 \cdot 10^{-3}}{158040 \cdot 10^{-12}} \omega_i \cdot 10^{-4} = 5,299 \cdot \omega_i$$
 МПа, где ω_i в см².

Касательные напряжения свободного кручения равны $au_{\theta}=0\,$ МПа.

Касательные напряжения стесненного кручения по формуле (1.17) равны

$$\tau_{\omega i} = -\frac{{}^{M_{\omega}S_{\omega}^{\rm orc}}}{{}^{I_{\omega}\delta_{i}}} = -\frac{{}^{-0,3821\cdot 10^{-3}}}{{}^{158040\cdot 10^{-12}}} \cdot \frac{S_{\omega}^{i}}{\delta_{i}} \cdot 10^{-6} = 24,18\cdot 10^{-4} \cdot \frac{S_{\omega}^{i}}{\delta_{i}} \ \, {\rm M}\Pi a, \ \, {\rm где} \ \, S_{\omega}^{i} \ \, {\rm B} \ \, {\rm cm}^{4}, \, a \, \delta_{i} \ \, {\rm B} \ \, {\rm cm}.$$

Касательные напряжения сдвига по формуле (1.18) равны

$$\tau_V = \frac{V_z S_y^{\text{orc}}}{I_y \delta_i} = \frac{-5.5 \cdot 10^{-3}}{3378 \cdot 10^{-8}} \cdot \frac{S_y^i}{\delta_i} \cdot 10^{-4} = -16.28 \cdot 10^{-3} \cdot \frac{S_y^i}{\delta_i} \text{ M} \Pi \text{a}.$$

В таблице 4.5 приведены значения нормальных и касательных напряжений, вычисленных по приведенным формулам.

Таблица 4.5 Нормальные и касательные напряжения

тонки	z, cm	ω, cm ²	Нормальные, МПа			S_{y}^{i} ,	$S_{\omega}{}^{i}$	δ_{i}	Касательные, МПа			
точки			σ_{x}	σ_{ω}	$\sigma_{\text{сум}}$	\mathfrak{S}_{y} ,	\mathcal{G}_{ω}	O ₁ ,	$ au_V$	$ au_{\omega}$	$ au_{\text{сум}}$	
1	0	0	0	0	0	192,5	-0,04	0,5	-6,27	0	-6,27	
2	13,0	-90,32	-32,23	-30,8	-63,0	108,0	293,5	0,5	-1,76	1,42	0,34	
3	13,0	65,68	-32,23	22,4	-9,8	30,0	367,4	0,5	-0,49	1,78	1,29	
4	7,0	179,4	-17,35	61,2	43,8	0	0	0,5	0	0	0	

Из анализа суммарной эпюры нормальных напряжений получаем, что наиболее опасной точкой является точка 2 контура. В опасной точке 2 опасного сечения вычисляются эквивалентные и выполняется оценка по 3 теории прочности:

$$\sigma_{\text{9KB}} = \sqrt{\sigma_{\text{сум}}^2 + 4\tau_{\text{сум}}^2} = \sqrt{63.0^2 + 4\cdot0.34^2} \approx 63.0 \text{ M}\Pi \text{a}.$$

Условие прочности $\sigma_{\text{экв}} = 63.0 \text{ МПа} \leq [\sigma] = 0.75 \sigma_{\text{т}} = 0.75 \cdot 235 = 176 \text{ МПа}$ выполняется.

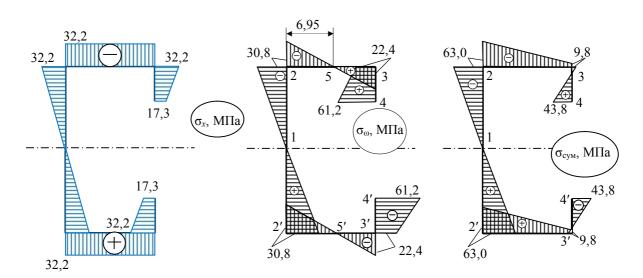


Рисунок 4.11 – Эпюра нормальных напряжений изгиба

Рисунок 4.12 - Эпюра нормальных напряжений стесненного кручения

Рисунок 4.13 - Эпюра суммарных нормальных напряжений

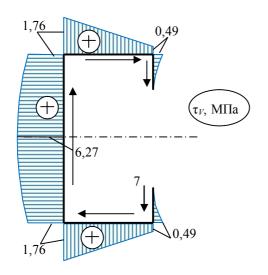


Рисунок 4.14 — Эпюра касательных напряжений среза

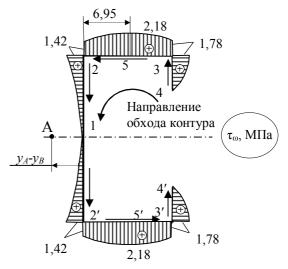


Рисунок 4.15 - Эпюра секториальных касательных напряжений

Составитель: Доцент, к.т.н. В.Д.Вешуткин