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CHAPTER 1 

 

SUBJECT OF THE STRENGTH OF MATERIALS. BASIC HYPOTHESIS 

 

1.1. INTRODUCTION 

Nowadays the building of structures, machines and other engineering structures is impossible 
without projects previously drawn. The project consists of the drawings and explanation notes 
presenting the dimensions of the construction elements, the materials necessary for their building and 
the technology for their building. The dimensions of the elements and details depend on the 
characteristics of the used materials and the external forces acting upon the structures and they have to 
be determined carefully during the design procedure.  

The structure must be reliable as well as economical during the exploitation process. The 
reliability is guaranteed when the definite strength, stiffness, stability and durability are taken in mind 
in the structure.  The economy of the construction depends on the material’s expenditure, on the new 
technology introduction and on the cheaper materials application. It is obvious that the reliability and 
the economy are opposite requirements. Because of that, the Strength of Materials relies on the 
experience as well as the theory and is a science in development.    

 Basic concepts 

Strength is the ability of the structure to resist the influence of the external forces acting upon 
it. 

Stiffness is the ability of the structure to resist the strains caused by the external forces acting 
upon it. 

Stability is the property of the structure to keep its initial position of equilibrium. 

Durability is the property of the structure to save its strength, stiffness and stability during the 
exploitation time.   

Strength of Materials widely relies on the Theoretical Mechanics, Mathematics and Physics. 
Besides, it is the basis of the other subjects in the engineering practice. 

1.2. BASIC PROBLEM OF THE STRENGTH OF MATERIALS 

The basic problem of the science is development of engineering methods to design the structure 
elements applying the restraining conditions about the strength, stiffness and stability of the structure 
when the definite durability as well as economy is given. 
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1.3.REAL OBJECT AND CORRESPONDING COMPUTATIONAL SCHEME 

To examine the real object a correct corresponding computational scheme must be chosen. The 
computational scheme is a real body for which the unessential attributes are eliminated. To choose the 
correct computational scheme the main hypotheses of Strength of materials have to be introduced. 

1.4. MAIN HYPOTHESES 

A. Hypotheses about the material building the body 

- Hypothesis of the material continuity  

The material is uniformly distributed in a whole body volume. 

-  Hypothesis of the material homogeneity 

All points of the body have the same material properties. 

- Hypothesis of the material isotropy 

The material properties are the same in each direction of a body.  

- Hypothesis of the deformability of the body 

Contrary to the Theoretical Mechanics studying the rigid bodies, Strength of Materials 
studies the bodies possessing the ability to deform, i.e. the ability to change its initial shape and 
dimensions under the action of external forces.  

The deformations at each point are assumed to be small relative to the dimensions of 
construction. Then, their influence onto the mutual positions of the loads can be neglected (the 
calculations will be made about the undeformed construction).   

- Hypothesis of the elasticity 

Elasticity is the ability of the body to restore its initial shape and dimensions when the acting 
forces have been removed. 

   

B. Hypotheses about the shape of the body 

- The basic problem of Strength of Materials is referred to the case of the beam type 
bodies. The beam is a body which length is significant bigger than the cross-sectional 
dimensions. 

- Hypothesis of the planar cross-sections (Bernoulli’s hypothesis) 

Each planar cross-section normal to the axis of the beam before the deformation remains 
planar and normal to the same axis after deformation. 
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C. Hypotheses about the applied forces  

- The distributed upon a small area loads are assumed to be concentrated. 

 

 

- Principle of Saint-Venant 

If we replace a set of forces acting upon an area  1   of the deformable body with other set 

of forces equivalent to the first one, but acting upon the area 2          of the same body, the 

replacing will influence on the stresses and deformations in the area  , containing 1  and 2 , 

where the influence’s magnitude will correspond to the size of the bigger area between 1  and 

2 .  

- Hypothesis of the local equilibrium 

If the body is in equilibrium, then, each part of the body is also in equilibrium. 

- Hypothesis of the statical action of the forces 

The magnitude of the applied external forces increases gradually from zero to the final 
value. 

- Hypothesis of the initial and final position of equilibrium 

Let the initial position of the beam to be the position of equilibrium. If the applied external 
forces cause the small deformations according to the hypothesis studied earlier, the final position of the 
beam is also position of equilibrium. Then, investigating the beam, the assumption that the initial 
position of equilibrium coincides with the final one is made.  
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- Principle of superposition 

The final magnitude of a quantity considered (stress, strain, displacement, rotation) caused 
by the set of external forces can be obtained as an algebraic sum of the quantity magnitudes 
caused by the particular forces composing the set.  

 

 

- Principle of hardening 

A body has a definite shape and dimensions before loading. 

 

 

 

The same body has the definite shape and dimensions after loading, again, but they are 
different than the first ones. 
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Rigid body – a body consisting of particles the distances between which do not change  

Deformable body – a body consisting of particles the distances between which change. A 
deformable body is a rigid one only to the definite loading. 
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CHAPTER 2 

 

INTERNAL FORCES 

 

2.1. DEFINITION OF INTERNAL FORCES. METHOD OF SECTION.  

 A beam in equilibrium under the action of a set of forces is considered. This set of forces 
causes the deformation of the beam where the distances between the beam points change.  Then, the 
forces of interaction between the points also change. The additional forces of interaction arising in the 
body are named internal forces. They have to be studied because they are related to the resistance of 
the body against the applied loads, and, consequently, to the strength of the body. The internal forces 
are the measure of interaction between two body parts situated on the two sides of the same section.  

The internal forces can be determined by the 
method of section, as follow: Let the beam in fig.2.1 
to be in equilibrium under the action of a set of forces 

nFFF ...,, 21  named external forces. They include the 

external loads as well as the support reactions 
previously obtained. A plane normal to the 
longitudinal axis of the beam divides the body into 
two parts. A border section between these two parts is 
called the cross-section.  

 
 
 

Fig. 2.1: A beam acted upon by a set  
  of external forces 

 

Further, one of the parts is removed (usually this one upon which the bigger number of loads 
acts) while the other will be investigated.  

 

 
 

Fig. 2.2:  The left beam part 
 

 The hypothesis of the local equilibrium has the essential role in Strength of materials and 
according to it, if a body is in equilibrium, then each part of the body is in equilibrium, too. This 
hypothesis leads to the conclusion that the left part of the beam must be in equilibrium under the action 
of a set of forces applied on it. However, the external forces are not in equilibrium themselves. To be 
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the left beam part in equilibrium, the new type of forces must be introduced. These additional forces 
are the internal forces in the beam and they give the influence of the right beam part on the left one.  
 If the right beam part is chosen for investigation, then the internal forces giving the influence 
of the left beam part on the right one have to be put. According to the Newton’s third law, the internal 
forces acting upon the left beam part and these ones acting upon the right beam part must have the 
same magnitudes, same directions and opposite senses. 

The internal forces points of application in the plane of the cross-section are infinite as number 
and, because of that, they can not be found strictly. Then, to determine their magnitudes, the theorem 
of Poinsot1 known by Theoretical mechanics will be used, as follow: reduction of the set of internal 

forces will be made about the cross-section’s center of gravity where the main vector R  and the main 

moment M will be obtained.  
In a spatial case of loading when the left beam part is considered, the origin of the coordinate 

system is the center of gravity of the cross-section. The axis x  is normal to the cross-sectional plane 
and its positive sense is out of the section. The axes y  and z  belong to the cross-sectional plane 
where the z axis has the downward direction while the y axis has the sense so that the three axes 
form the right-handed Cartesian coordinate system. 

 

 
 

Fig. 2.3:  Internal forces – spatial case 
 

Vectors R  and M  are represented by its projections onto the axes of the right-handed 
Cartesian coordinate system. If the beam part considered is the left one, then the senses of the internal 
forces always coincide with the senses of the axes. 

If the right beam part is chosen, then the x axis of the right-handed coordinate system points 
toward the section. Besides, all of the internal forces must be introduced with senses opposite to the 
senses of the axes.   

The internal forces in the spatial case of loading are six and they are labeled in the following 
manner: 

N  - axial (normal) force;    T - torsion moment;  

zV - shearing force onto z axis;  yM - bending moment about y axis; 

yV - shearing force onto y axis;  zM - bending moment about z axis. 

If the external forces acting upon the beam are situated in the plane containing the beam axis, 
then the loading case named planar is simpler: only the axes x  and z  have to be introduced in the 
cross-section’s center of gravity. Now, the internal forces are three: 

N  - axial (normal) force;V - shearing force; M - bending moment. 
                                    
1 Louis Poinsot (1777-1859) is a French mathematician. 
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The internal forces must be introduced always with their positive senses, which for the left and 
right beam part are given in fig.2.4: 

 

       
 

Left beam part                    Right beam part 
 

Fig. 2.4:  Positive senses of internal forces – plane case  
 

The axial force N  is supposed to be positive when its sense is out of the section.  
The shearing force V  is supposed to be positive when its sense coincides with the sense of the 

positive axial force rotated at an angle of 900 in clockwise direction.  
The bending moment is supposed to be positive when the curved arrow represented the 

moment begins from the downer beam end and finishes in the upper one without crossing the beam. 
It is important to note, that the concept of internal forces always relates to the definite beam 

section. 
 
2.2. INTERNAL FORCES FUNCTIONS AND DIAGRAMS 
 The conditions of equilibrium are written about the beam part considered. These equations are: 
- In a spatial case  

;0)1 
i

ixF   ;0)2 
i

iyF  ;0)3 
i

izF              (2.1) 

;0)4 
i

ixM  ;0)5 
i

iyM  ;0)6 
i

izM              (2.2) 

- In a plane case 
;0)1 

i
ixF   ;0)2 

i
izF  .0)3 , 

i
CiM                                 (2.3) 

It is obvious, that each internal force can be determined by one equation. However, in a real 
problem, it is not enough to find the magnitude of the internal forces in the definite beam section. It is 
necessary to obtain the change of the internal forces in the whole beam. To perform that, the beam 
must be separated into the segments.  

The boundary point (section) of the segment is a beam point at which the concentrated force or 
moment is applied. If the distributed load acts upon a beam, then, both the beginning and the end of the 
load are the boundary points. Besides, the points at which the change of distributed load intensity 
exists are also boundary points. Finally, if the beam axis bends, then the bending point is a boundary 
point. 

After that, an arbitrary chosen beam section of distance x  for each segment must be 
considered. The distance x  can be measured from the beginning of the beam, but in the most of the 
cases x  is measured from the left or the right end of the segment. Further, the imaginary cut through 
the section chosen has to be made to divide the beam into two parts. Then, the one beam part has to be 
investigated and the equilibrium conditions must be written. In this manner, the internal forces will be 
obtained as functions of x .  

The graphs of these functions are named the internal forces diagrams. To build the diagrams, 
first the zero line representing the beam axis must be drawn in scale. The typical values of every 
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function have to be drawn perpendicular to the zero line in a definite scale and the typical points have 
to be obtained. Finally, the points must be connected consequently.   

The rules about the diagrams building are: 
- In a plane case of loading of a straight beam – a broken line must be drawn under the beam 

axis. The positive values of the bending moment M must be put on the side of the broken 

line while the positive values of the axial force N  and the shearing force V  have to be put 

on the opposite to the broken line beam side; 
- In a plane case of loading of a bent beam – The rule mentioned above is applied for each 

segment, but for a vertical or inclined segments the broken line represents a relatively 
named downer beam part;  

- In a spatial case of loading of a beam – The values of N , zV , T  and yM  must be drawn 

parallel to z axis. The positive values of N , zV  and T  must correspond to the negative 

sense of z axis while the positive values of yM coincides with the positive sense of z . 

The values of yV  and zM  must be drawn parallel to y axis where the positive values 

must be drawn on the side with negative sense of y . 

The internal forces diagrams give the possibility to determine visually the beam section at 
which the biggest internal force exists (the failure of the construction starts at this beam section). 
Because of that, the internal forces diagrams predetermine the definite conditions of the construction 
strength, stiffness and reliability.  

 

 Problem 2.1. Build the internal forces diagrams of the planar straight beam given.  

The support reactions are obtained by the 
equations: 
 

;0
i

ixF ;0HA ;0
i

izF  

;60-20.3 kNR q  

;50;01060- kNAA VV   

.50

;01004.10

5,1.60;0

kNmM

MM

A

AA





 

Check: 

;01002.10

5,4.6050.650

;01002.105,4.60

6;0





 VAD AMM

 

.0370370   
 
 
 

 
 
 

50=MA  

N

V

M

0=AH

50=AV

kN10

m/kN20  
kNm100  

+

5,112 110

50  

10  

60qR

100  100
 

m5,2
- 

B xx x  

C  D
 

2  1 m3

50  
+++
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A beam given has three segments: AB , BC and CD and the internal forces functions are determined, as 
follow: 

 
segment m3x0:AB   

;0
i

ixF ;0N  

;0
i

izF ;5020-;0-20-50  xVVx  

    ;50-3;500 kNVkNV   

;0sec 
i

tionM ;050-50-
2

.20  x
x

xM  

 ;505010- 2  xxM       ;50-3;500 kNMkNmM   

;05020-  xV ;5,2 mx    .5,1125,2 kNmM   
 
segment m1x0:BC   

;0
i

ixF ;0N  

;0
i

izF ;10-;010- kNVV   

    .1101;1000;10010

;010010-;0∑ sec

kNmMkNmMxM

xMM tion




 

segment m2x0:CD   

 ;0
i

ixF ;0N ;0
i

izF ;0V  

;0100;0sec MMM tion 
 

  
 

To build the internal forces diagrams, the principle of superposition can be used, too. In 
accordance to the principle the final magnitude of a quantity considered (support reaction, internal 
force) caused by the set of forces can be obtained as an algebraic sum of the quantity magnitudes 
caused by the particular forces composing the set.  
 
 
 
 

Problem 2.2 Apply the principle of superposition to build the bending moment diagram of the 
beam given. 

 
The load applied on the beam consists of a concentrated force and a concentrated moment. 

First, the bending moment diagram under the action of a force will be built; then, the bending moment 
diagram under the action of a moment will be built. Finally, to obtain the entire bending moment 
diagram the typical values of the particular diagrams must be summarized.   

 
 
 
 

50  

50  

20

x

x20

2/x

N  

V  

M  

10 100  

N  

x

C  D  V  

M  2

N  

x

D  V  

M  100



13 
 

 
 
 
 

2.3. THE DIFFERENTIAL EQUATIONS OF INTERNAL FORCES 

2.3.1. IN THE PLANE CASE OF LOADING 
The straight beam loaded by concentrated force, concentrated moment and uniformly 

distributed transverse and axial loads is considered (fig.2.5). 

 
 

Fig. 2.5:  Straight beam under loading 
 

F=20 kN 

 

3m 3

20 

30 

10 10 

M=100 kNm 

+ 

100  

MF 

- 

100  50 

MM 

- 
M20 

100  
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To derive the differential equations of the internal forces of the segment in which the distributed 
loads act the infinitesimal beam part is examined.  

 
 
 
 
 
 
 

 
 
 

Fig.2.6:  Infinitesimal beam part 
  
Further, the equilibrium equations of the infinitesimal beam part are written: 

1) ;0
i

ixF  ;0 tdxNdNN ;t
dx

dN
                           (2.4) 

2) ;0
i

izF  ;0-  qdxVdVV ;-q
dx

dV
                                               (2.5) 

3) ;0 i
i

right Fmom  .0-
2

-  dxV
dx

qdxMdMM                                     (2.6) 

 The term 
2

dx
qdx  is very small and it can be neglected. In this manner, the relation 

V
dx

dM
 is obtained.                                                               (2.7) 

 It can be proved, if the distributed loads functions  xt  and  xq  are continuous functions, 
then the differential equations of the internal forces are: 

 
           .;-;- xV

dx

xMd
xq

dx

xVd
xt

dx

xNd
                                           (2.8) 

 The distributed loads  xt  and  xq  are supposed to be positive when their senses coincide 

with the positive senses of the internal forces  xN  and ( )xV , respectively, for the left beam part.  
  

A small beam part of length x  is considered. The distributed loads  q  and  t  
represented as continuous functions act upon this small part of the beam.  

 
 

Fig. 2.7:  A small beam part of length x  
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 The coordinates x  and   are measured from the left end of the segment. x  is the distance to 
the left section’s center of gravity of the beam part considered, while   is the distance to the arbitrary 

section of the beam part considered. The distributed loads have intensities  q  and  t , 
respectively, corresponding to distance  . The internal forces with their positive senses are introduced 

in the two sections of the part considered. Because of the small length x , the loads  q  and  t  

can be considered as uniformly distributed with intensities equal to  1q  and  2t , where 

xxx  1 ; xxx  2 . Then, the resultant forces are   xqRq  1  and   xtRt  2 , and 

their point of application is on the beam part considered. The distance between the resultant forces 
point of application and the right beam end is xk  , where 10  k . 
 The beam part considered is in equilibrium and the equilibrium equations can be written, as 
follow: 

1) ;0
i

ixF      ;0 tRxNxxN                            (2.9) 

2) ;0
i

izF       ;0 qRxVxxV                                           (2.10) 

3) ;0 i
i

right Fmom       ;0 xkRxxVxMxxM q                      (2.11) 

First, the expressions of qR and tR  are substituted. After that, dividing by x , it is obtained: 

     2t
x

xNxxN





;
     1q

x

xVxxV





;                                (2.12) 

        xqkxV
x

xMxxM





1 .                        (2.13) 

 Further, the transition 0 x  is made. In this case xx  21 ;  . The equations (2.12) and 
(2.13) become equations (2.8). 
 These differential relations are correct when the distance x  is measured from the left end of the 
segment. If it is measured from the right end of the segment, then the equations will have a form: 

 
           .-;; xV

dx

xMd
xq

dx

xVd
xt

dx

xNd
                                         (2.14) 

 
2.3.2.  IN THE SPATIAL CASE OF LOADING 
The differential equations of the internal forces, when the distance x  is measured from the left 

end of the segment, are: 
           ;-;-;- xq

dx

xVd
xq

dx

xVd
xt

dx

xNd
z

z
y

y                                     (2.15) 

               .--;;- xmxV
dx

xMd
xmxV

dx

xMd
xm

dx

xdT
zy

z
yz

y
x                     (2.16) 

 The functions of the distributed loads in the right side of these equations are:  xt  - the 

intensity of the axial load;  xqy  and  xqz  - the intensities of the transverse loads parallel to the 

axes y  and z , respectively;  xmx ,  xmy  and  xmz  - the intensities of the distributed moments 

parallel to the axes of the Cartesian coordinate system. 
 If x  is measured from the right segment end, then the differential equations will be: 

           ;;; xq
dx

xVd
xq

dx

xVd
xt

dx

xNd
z

z
y

y                          (2.17) 
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               .;--; xmxV
dx

xMd
xmxV

dx

xMd
xm

dx

xdT
zy

z
yz

y
x                     (2.18) 

 
Problem 2.3 Determine the internal forces functions of the beam shown and apply the 

differential equations to check the result.  

 
 
First, the support reactions must be determined: 

;0
i

ixF ;45;03.15 kNAA HH   

;30;2107;0502.807;0 kNBBBM A   

;50;3507;0505.807;0 kNAAAM VVVB   

Check: 
;0

i
izF .080-80;080-3050;080-  BA V  

 
segment m4x0:AC   
     

;0
i

ixF ;45;045- kNNN   

;0
i

izF ;5020-;0-20-50  xVVx  

.5010;050
2

.20;0 2
sec xxMx

x
xMM tion   

Differential check (check by the differential equations of the internal forces): ;m/kN20q;0t   
    ;00;-  xt

dx

xNd
 

    ;20-20-;-  xq
dx

xVd
 

    .5020-5020-;  xxxV
dx

xMd
 

 
segment m3x0:CB   

   
;0

i
ixF   ;4515-;0-315-  xNxN  

;0
i

izF ;30-;030 kNVV   

 
.4030

;050330;0sec




xM

xMM tion  
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Differential check: 
;0;/15  qmkNt  

    ;1515;  xt
dx

xNd
 

    ;00;  xq
dx

xVd
 

    .30-30-.;  xV
dx

xMd
 

segment m2x0:BD   

 ;0
i

ixF ;0N  ;0∑ 
i

izF ;0V    

 .50;050;0sec  MMM tion  

Differential check: 
;0;0  qt  

    ;00;  xt
dx

xNd
 

    ;00;-  xq
dx

xVd
   

                     
    .00;  xV

dx

xMd
 

 
 

2.4. INTEGRATION OF THE INTERNAL FORCES DIFFERENTIAL EQUATIONS 
 
  This approach is applicable when a complicated distributed loads act upon a straight beam as 
well as a curved one. The essence of the method is the integration of the internal forces differential 
equations (2.8) in every beam segment. 
 To determine the integration constants the boundary conditions of equilibrium of typical beam 
sections must be written.  These beam sections are separated by cuts at infinitesimal distance from the 
section. It is important the unknown support reactions must not take part in the boundary conditions. 
 After the internal forces functions have been determined, the internal forces diagrams can be 
drawn.  
 

Problem 2.4 Apply the integration method to find the internal forces functions of the beam 
shown. 

 
The beam contains two segments and the differential equations (2.8) are written and integrated 

for each of them, as follow: 
segment m4x0:AC   

  ;5-xt
        .5;5;- 1CxxN

dx

xdN
xt

dx

xdN
  

The function ( )xq  is a parabola of a type   cbxaxxq  2 . To find constants a , b  and c  

the conditions   00 q ;   305 q  и   05' q  will be used. It is obtained: 2,1-a ; 12b ; 0c . 

Then,   xxxq 12-1,2 2  .  
The differential equation is written:  

        xxxx
dx

xdV
xq

dx

xdV
12-1,2121,2--;- 22  , 

and after integration it is carried out:    .6-4,0 2
23 CxxxV   
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 Further, the differential equation 
     

2
23 6-4,0; Cxx

dx

xdM
xV

dx

xdM
 is examined. The 

expression   32
34 2-1,0 CxCxxxM  is obtained after integration. 

 

 
 
 
 
 

To find the integration constants the boundary sections А and В are investigated: 
 
Boundary section А: 

                         
  00)1;0  MM A . 

 



19 
 

       
 
Boundary section В:   

 ;0H     ;55)2 N  

 ;0M B     .05)3 M  
 

The integration constants are: ;20-1 C ;5,372 C  03 C .  

 The full expressions of the segment AB’s internal forces 
functions have been already found and the diagrams can be built. 

   ;20-5xxN     ;5,376-4,0 23  xxxV    .5,372-1,0 34 xxxxM   
 To find the internal forces functions in segment ВС the method of section will be applied and 
the right segment part will be considered. 

 ;0H   ;5N  

 ;0V  ;0V  

 ;0M  .0M  

 
 

 
2.5. CHECKS OF THE INTERNAL FORCES FUNCTIONS AND DIAGRAMS 

 2.5.1. CHECK OF THE INTERNAL FORCES FUNCTIONS 
 The differential equations of the internal forces have to be considered: 

- In a plane case of loading – equations (2.8); 
- In a spatial case of loading – equations (2.12) and (2.13)  

 This check has been already performed in problem 2.3. 
 
 2.5.2. CHECK OF THE INTERNAL FORCES DIAGRAMS 
 a) Check about the type of the diagrams 
 The last two differential equations in (2.8) are rearranged in a form 

 
     xq

dx

xVd

dx

xМd
-

2

2

 .                                     (2.19) 

It is obvious, if in some beam segment   constxq  , then the shearing force function 

 xV must be linear, while the bending moment function  xM must be square. If   0xq , then 

 xV must be constant, while  xM must be linear function. 

 Furthermore, if in some beam segment the distributed load  xq points down, then the function 

 xV must decrease, and the convexity of M diagram must direct down. However, if  xq points 

up, then the function  xV must increase, and the convexity of M diagram must direct up.  
 

b) Check about the steps and kinks in the diagrams  
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If a concentrated transverse force F  is 
applied at some beam section, then the step in 
V diagram must exist at the same section where 

the magnitude and the sense of the step coincide 
with these ones of the force. Besides, the kink in 

M diagram must exist at the same beam 
section where the sense of the kink is in the sense 
of the force. 

 
 If a concentrated axial force F  is applied at some beam section, then the step in N diagram 
must exist at the same section where the magnitude of the step is equal to this one of the force while 
the sense of the step is the force’s sense rotated at an angle of 900 clockwise.  

If a concentrated moment is applied at some beam section, then the step in M diagram must 
exist at the same section where the magnitude and the sense of the step coincide with these ones of the 
moment.   

              

 

 
             
 c) Area check 
 The differential equations (2.8) are considered for any segment and the rearrangements are 
made, as follow:  

   dxxVxMd  ;    
ll

dxxVxdM
00

)( ,                (2.20) 

where l  is the length of the segment. The integral in the right side of the equation represents the area 

lVA , of  V diagram. Then, using (2.20), it is obtained: 

    lVAMlM ,0-  .                            (2.21) 

 The other two equations in (2.8) are integrated in the same manner:  

    dxxtxNd - ;  
ll

dxxtxdN
00

)()( ;                         (2.22)

    dxxqxVd - ;  
ll

dxxqxdV
00

)()( .                         (2.23) 

 Introducing                  
l

t dxxtR
0

)(  and  
l

q dxxqR
0

)(                                                (2.24)  

which are the resultant forces of the distributed loads  xt  and  xq , respectively, the relations (2.22) 
and (2.23) become: 
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     tRNlN 0- ;     qRVlV 0- .              (2.25) 

 
Problem 2.5. Make the area check for problem 2.1. 
 
segment m3x0:AB   

     tRNlN 0- ; 00-0  ; 00  ; 

     qRVlV 0- ; 3.2005-10  ; 6060  ; 

     lVAMlM ,0-  ;    2/3.105005-110  ; 6060  . 

 
segment m1x0:BC   

     tRNlN 0- ; 00-0  ; 00  ; 

     qRVlV 0- ; 00110  ; 00  ; 

     lVAMlM ,0-  ;  1.10011-100  ; 1010  . 

 
segment m2x0:CD   

     tRNlN 0- ; 00-0  ; 00  ; 

     qRVlV 0- ; 00-0  ; 00  ; 

     lVAMlM ,0-  ;  0010-100  ; 00  . 

  
 d) Check about the equilibrium of a joint 
 First, the joint must be detached from the construction by the imaginary cuts through it. Then, 
if the concentrated force or moment acts at the joint, it must be put. Further, the internal forces with 
their correct senses have to be introduced in the cuts’ sections and the equilibrium equations of the 
joint must be written. Finally, the equations obtained must be checked. 
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CHAPTER 3 
 

 
STRESSES 
 

 
3.1. STRESS AT A POINT 

A deformable body loaded by surface as well as body forces is in equilibrium. In order to 
investigate internal forces the body is divided into two portions by imaginary plane and the left 
portion is examined. Influence of the right body portion on the left one is accounted for the internal 
forces reduced about the cross-sectional center of gravity. Thus, the internal forces are defined as 
concentrated forces and moments. 

Actually, the internal forces are distributed and their magnitudes are not constants in the 
cross-sectional area. Therefore, it is necessary to introduce the concept of stress which will 
characterize the law of distribution of internal forces.  

А small area A  around point K in boundary plane of the left body portion is considered. 
The internal forces acting on the boundary plane give the influence of the right body portion on the 
left one. Some of the internal forces act on the small area A  only and they are reduced about point 
K. Statics proves that the result of the reduction of set of forces about point is a main vector and a 
main moment. However, the area upon which the forces act is very small and, thus, the main 

moment is neglected. Furthermore, it is supposed that the main vector R


  correctly describes the 
state of internal forces on the small area A  around the point. 

The concept of stress was introduced by Cauchy in 1822. Stress is the intensity /density/ of 
the internal forces distribution on the small area around the point of the deformable body. 

 
 

                                
 
 
The average stress on the area can be described by the expression 

A

R
pav 


 . 

It is well-known that the material building the body is distributed uniformly in the whole 
volume of the body. Thus, the limit transition 0A  can be used. Then, stress on the area of 
normal n around point K is  

.lim
0 dA

Rd

A

R
p

A
n 






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The SI unit for stress is Pascal (symbol Pa ) which is equivalent to one newton (force) per 

square meter (unit area): 
2m

N
1Pa1  . 

The vector of stress depends on the surface forces, body forces, on the position of the point 
considered, and on the orientation of the area around the point.  

The stresses on the different planes passing through the point considered are different. 

 

Generally, the stress vector is inclined at an angle with respect to the plane of the cross-section. 

Let  to be the angle between stress np  and the cross-sectional normal n. Then, 

 cospnn   is the normal stress on the plane of normal n, 

 sinpnn   is the shearing  stress on the plane of normal n. 

The normal stresses arise when the particles of the body strive either to remove or to approach 
each other. Shearing stresses are related to the mutual displacements of the particles in the cross-
sectional plane. 

It is evident that 

 2
n

2
nnp   . 

The vectors of these stresses have the same origin. Then, their tails will lie on the ellipsoid 
of stresses, named Lame’s ellipsoid. 

The state of stress at point K represents a sum of all stresses onto all possible planes passing 
through the point. 

                                              

The investigation on the state of stress gives a possibility to analyze the strength of material 
when the random loading acts upon the body. 

A body loaded by a set of external forces is given. An infinitesimal parallelepiped of 
dimensions dx, dy, dz in the vicinity of arbitrary chosen point of the body is separated. The normal 
and shearing stresses about the point investigated will act on the walls of the parallelepiped.  

Normal stresses are written with one index. It corresponds to the letter of the 
coordinate axis parallel to the normal stress considered. 
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Shearing stresses have two indices. The first one corresponds to the index of the normal 
stress of this wall while the second index is the letter of the coordinate axis parallel to the shearing 
stress considered. 

                                 

The behavior of the body acted upon by external forces does not depend on the coordinate 
system. Therefore, the state of stress can be described by tensor, named Cauchy’s tensor.  

 

 

 

3.2. THEOREM OF THE SHEARING STRESSES EQUIVALENCE 

 The theorem gives the dependence between the magnitudes and directions of the shearing 
stresses acting on two mutually perpendicular planes around a point. 
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         The moment equation of equilibrium about z-axis of the forces loading the walls of the 
parallelepiped is: 

0dxdzdydydzdx yxxy   ; xyyx    

In the same fashion: zyyz    and  xzzx   . 

 Shearing stresses on two mutually perpendicular planes are equals. They are either 
“meeting” or “running” to each other.  

 

3.3. THEOREM OF THE TOTAL STRESSES EQUIVALENCE 

          

The stresses on two planes of normal n1 and n2 passing through the same point of 
deformable body are given. The essence of the theorem is that the projection of the first stress 
on the normal n2 is equal to the projection of the second stress on the normal n1.   

 

3.4. PRINCIPAL PLANES AND PRINCIPAL STRESSES  

Augustin Louis Cauchy found that three mutually perpendicular planes onto which the 
shearing stresses take zero values exist at every point of the loaded body. These planes are named 
principal planes, their directions are named principal directions, and the normal stresses acting on 
these planes are named principal stresses labeled by 321 ,,  . 
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CHAPTER 4 

 

THREE-DIMENSIONAL STATE OF STRESS AT A POINT 

 

4.1. DETERMINATION OF THE STRESSES ON RANDOM PLANE AROUND A 

POINT WHEN THE STRESSES ON THREE MUTUALLY PERPENDICULAR 

PLANES ARE KNOWN  

The state of stress at a point is known when the stress pn on random plane around the point 

can be determined. 

                        

 

The stresses

xz

xyx

x

p







; 

yz

yy

yx

p







; 

z

zyz

zx

p







 and the unit vector of the normal n 






cos

cose

cos

n






  are given. The task is vector 

nz

nyn

nx

p

pp

p

 to be found. 
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hAV

AνA

AμA

AλA

AA

OAB

OAC

OBC

ABC

.Δ
3

1
=Δ

;Δ=

;Δ=

;Δ=

;Δ=

Δ

Δ

Δ

Δ

 

 

;0X
i

i   

  0VGApAAAlim xABCnxAOBzxOACyxOBCx
0h




 


; 

( ) 0=3/.Δ+АΔ+АΔ-АΔ-АΔ-lim
0→

hAGpντμτλσ xnxzxyxx
h

. 

This expression is divided by h  and, thus,  nxp  is obtained. The expressions for nyp  and  

nzp are obtained in the same manner. 

 

zyzxznz

zyyxynyn

zxyxxnx

νσμτλτp

ντμσλτpp

ντμτλσp

++=

++=

++=

 

 

zyxn pppp    

 

If the vectors of stresses on different planes passing through point К have the same origin, 

then the connection of their tails will form an ellipsoid named ellipsoid of the stresses (Lame’s 

ellipsoid). 

 

4.2. STRESS TENSOR 

The stress tensor is a sum of nine stresses and it is represented in the form 

zyzxz

zyyxy

zxyxx







. 
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Applying the theorem of the shearing stresses equivalence, namely yxxy   , zyyz   , 

zxxz   , it can be concluded that only six stresses are independent of each other. These six 

parameters define the state of stress at point K. 

The normal stress on the plane of normal n is 

nnxynnxynnxy
2
nz

2
ny

2
nxn 222   ,  

while the shearing stress on the same plane will be obtained by expression  2
n

2
n

2
n p  . 

 

4.3. PRINCIPAL STRESSES AND PRINCIPAL PLANES 

There are three mutually perpendicular planes on which the shearing stresses take zero 

values. Normal stresses on these planes are named principal stresses and they can be obtained by 

cubic equation 

0cba n
2
n

3
n   ,  

where zyxa   ; 

xzxzyzyxy

xzzzyyyxx

zxyzxyxzzyyx

στστστ

τστστσ

τττσσσσσσb

=

=---++= 222

; 

zyxxz

zyyxy

yxyxx

2
xyz

2
zxy

2
yzxxzyzxyzyx 2c












. 

a, b and c are the three invariants of the state of stress at a point. 

The roots of the cubic equation are always real and they are labeled by  

 321321 ,,   . First root has the biggest value, i.e. it is maximum, while the third root 

has the smallest value, i.e. it is minimum, compared to all normal stresses existing on different 

planes passing through the point. The directions of 321 ,,  , i.e. the normals 321 n,n,n , of the 

planes of principal stresses are principal directions at the point. They are obtained by the set of 

equations 
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 
 

 
.1

,0

,0

,0

2
n

2
n

2
n

nnznyznxz

nzynnynxy

nzxnyxnnx

















 

If the three principal stresses at a point are not equal to zero, then the state of stress at this 

point is called three-dimensional (spatial) state of stress. If two of the principal stresses are non-

zero, then the state of stress is two-dimensional (plane). If only one of the principal stresses is non-

zero, then the state of stress is one-dimensional (linear). 

 

4.4. EXTREME SHEARING STRESSES 

The extreme values of the shearing stresses can be calculated by the formulas 

     213132321 2

1
,

2

1
,

2

1   . 

They are named extreme shearing stresses and they belong to the planes passing through 

the point and making the angle of 450 with the planes of principal stresses. The normal stresses 

on the planes of the extreme shearing stresses are 

     213,132,321, 2

1
,

2

1
,

2

1   nnn . 
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CHAPTER 5 

 

TWO-DIMENSIONAL STATE OF STRESS AT A POINT 

 

5.1. DEFINITION 

When one of the roots of the cubic equation mentioned earlier is equal to zero, then the state 

of stress is two-dimensional. Usually, 0 zzyzx  , i.e. the stresses different than zero lies 

in the plane xy.  

 

5.2. STRESSES ON A PLANE OF  NORMAL N 

The point K from the body loaded by external forces is considered. Stresses x , y and 

yxxy    on the horizontal and vertical planes passing through the point are known. The task is to 

obtain the normal and shearing stresses on random plane of normal n making angle   with x-axis. 

.                                    

The projections of the total stress np  acting on the plane considered are 

yxxnxp   and yxynyp   , where  sin;cos  . 

 The normal and shearing stresses are expressed by these projections in the following manner 

 cossin;sincos nynxnnynxn pppp  . 

 Then, the expressions for nxp  and nyp  are substituted in these formulas. Further, by 

application of the shearing stresses equivalence theorem, namely yxxy   , the normal and shearing 

stresses on the plane are obtained as 

    2222 sincoscossin;sincossin2cos  xyyxnyxyxn

 After that, the trigonometric relations are used, as follow: 
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     2222 sincos2cos;cossin22sin;2/2cos1cos;2/2cos1sin  . 

 Thus, the normal and shearing stresses on the plane of a normal making angle   with 
horizontal axis are carried out: 

( ) ( ) ( ) ατασστατασσσσσ xyyxnxyyxyxn 2cos-2sin-
2

1
=;2sin+2cos-

2

1
++

2

1
=  

 

5.3. ANALYTICAL SOLUTION 

a) Principal stresses and principal planes 

In order to find the principal stresses condition 0


d

d n  is used: 




d

d n   02.2cos2.2sin
2

1
  xyyx . 

It is evident that the condition for the extremum of n  matches to the condition for the 

annulment of n . Thus, it can be concluded that the shearing stresses are equal to zero on the planes 

of extreme normal stresses. Further, the angles 2,1  of the principal directions are obtained by 

trigonometric equation 

yx

xytg








2
2 . 

The relation between two roots of this equation is 
212

  . It is obvious that the 

principal planes are perpendicular to each other. 
The stresses invariants for the plane problem are 0;; 2  cbа xyyxyx  .  

The principal stresses are obtained using the following expression:  

  .
22

1 2

2

2,1 xy
yx

yx 


 






 
  

 
b) Extreme values of shearing stresses 

;0


d

d n  

.
2

;
4

;
2

2 3413
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c) Planes of pure shear 
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5.4. GRAPHICAL SOLUTION – MOHR’S CIRCLE 
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CHAPTER 6 

 

STRAINS 

 

6.1. BASIC NOTATIONS 

Each loaded body is deformed. Its form and sizes are changed because the points of the body 

change their position. 

Let a point  zyxM ;;  is an arbitrary point of loaded body. This point will take a position 

 ';';'' zyxM  after the body’s deformation.  

The vector of the displacement   ';; ММwvuD   is defined.  Its projections are 

     .;;;;;;;; zyxwDzyxvDzyxuD zyx                 (6.1) 

 zyxu ;; ,  zyxv ;;  and  zyxw ;;  are displacements along the axes x , y  and z  respectively. 

Three points of the loaded body are shown  

 

Fig. 6.1: Three points before and after the deformation 

 

Linear deformation in a point M at the direction of the axis x is 

MN

MNNM

MN
x






''
lim

0

 . 

Angular deformation xy  in a point M of the plane xy  is the small angle of the change of the 

right angle between two directions before the body’s deformation. 

Deformed state is the combination of the linear and of the angular deformations on the axes 

and planes passing through this point. 
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6.2. DIFFERENTIAL EQUATIONS OF THE GEOMETRY (CAUCHY’S EQUATIONS) 

Elementary parallelepiped is considered. It is connected with a coordinate system. Points 

 0;0;0K and  0;0;dxA  are chosen. Their positions after the deformation of the body are  wvuK ;;'  

and  dwwdvvduudxA  ;;' . 

 

Fig. 6.2: Two positions of AK 

 

The functions of the displacements  zyxu ,, ,  zyxv ,,  and  zyxw ,,  are continual. Their 

deformations are presented in this form: 

.
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

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

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
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





 

The deformation in the direction of x is considered and that is why the first addend is non-zero. 

Then the coordinates of a point A’ are 


















 dx
x

w
wdx

x

v
vdx

x

u
udxA ;;' . The vector 'K'A  is 


















 dx
x

w
dx
x

v
dx
x

u
dxKA ;;''  and its length is 

222

1'' 
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
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






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x

w

x

v

x

u
dxKA . The second 

addends are neglected and 











x

u
dxKA 1'' . 
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Then the linear deformation in the direction of x is  

dx

dx
x

u
dx

x















1
 ; 

x

u
x 


 . 

The formulas of the other linear deformations are deduced by analogous way.  

The Cauchy’s equations are 

;;
x

v

y

u

x

u
xyx 











   

;;
y

w

z

v

y

v
yzy 











   

z

u

x

w

z

w
zxz 











  ; . 

 

6.3. RELATIVE PROLONGATION IN ARBITRARY DIRECTION THROUGH A 

POINT OF A DEFORMED BODY 

Let the direction r is defined by the cosines  ,  ,   of the unit vector. The relative 

prolongation r  is  zxyzxyzyxr  222 . 

It is evident that it is expressed with the relative prolongations on three perpendicular directions 

and with the angular deformations.  

 

6.4. PHYSICAL MEANING OF THE ANGULAR DEFORMATIONS xy , yz  AND zx . 

 

Fig. 6.3: Two positions of the points A, B and C 

On demonstration can draw the following conclusions: 
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;dx
x

v
vd B 


  ;dy

y

u
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  

;1 x

v
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Analogically are obtained the formulas: 

;
y

w

z

v
yz 







  
z

u

x

w
zx 







 . 

xy , yz , zx  are a measure of the change of the angle between two perpendicular linear 

elements. Their directions before the deformation are defined with lower indices of  . 

6.5. TENSOR OF THE DEFORMATION 

zzyzx

yzyyx

xzxyx

Т







2

1

2

1
2

1

2

1
2

1

2

1

  

The main axes of the deformations coincide with those of the main axes of stresses. For these 

deformations tensor has the form: 

3

2

1

00

00

00





Т . 

Invariants of deformation tensor are: 

;3211 zyxI    

;1332212  I  

.3213 I  

 

6.6. VOLUME DEFORMATION 

Volumetric strain is defined as the relative change of the volume of material at a point of a 

deformable body. 

1Izyx   . 
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6.7. SAINT-VENANT EQUATIONS OF THE CONTINUITY OF THE DEFORMATIONS 
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CHAPTER 7 

 

DEFLECTION OF BEAMS 

 

7.1. INTRODUCTION   
 The object of investigation is a straight beam loaded by a set of forces situated in the principal 
beam plane xz  and the important assumption is that the beam axis will belong to the same plane after 
deformation. 

A cantilever beam acted upon by a concentrated force at free end is shown in fig.7.1. The 
positions of the beam axis before and after deformation are drawn. The Cartesian coordinate system 
with origin at the fixed support is introduced. The x -axis coincides with the beam axis while the z -
axis is directed down. Axes y  and z  are the principal axis of the beam. 

 
  

 
 
 

Fig. 7.1: A cantilever beam before and after deformation 
 
A random beam section at a distance x  from the fixed support is considered. The section’s 

center of gravity /point C / occupies the position 'C  after deformation. Due to the fact that the line 
'CC  is too short relative to the beam length l  it is accepted 'CC  to be perpendicular to the horizontal, 

i.e. the displacement of the section along the x -axis to be neglected. 
By definition the deflection is the vertical displacement 'CC  of the beam section’s center of 

gravity. It is perpendicular to the beam axis and it is denoted by w . 
If the deflections are determined for every beam section, then, the new position of the beam 

axis will be known. The beam axis after deformation is named elastic line of the beam. 
Furthermore, it is accepted the validity of the Bernoulli’s hypothesis in accordance with which 

every planar beam section normal to the axis before deformation remains planar and normal to the 
beam axis after deformation. The two positions of the random beam section at a distance x  are shown 
in fig. 7.1 where the angle  x  between them is also given. 

By definition the angle of rotation  /the slope/ is the angle between the positions of the beam 
section considered before and after deformation.  

l

x

C 

C’

 F 

  α(x)

  α(x)

w(x)|

x 

z 

F 

y 



39 

The problem about the stiffness of the beams subjected to bending is very important in the 
engineering practice. It is necessary the deformation of the beam to be restricted. In the opposite case 
the large deflections will influence adversely to the construction as well as the adjacent elements. In 
the real buildings the beams deflections are considerably smaller than its span. The biggest vertical 
displacement of the beam section is a function of the length L , for example 1000/L . 

 The position of the beam axis after deformation is known when the deflection w  and the slope 
  of the random beam section are determined. These two parameters depend on the coordinate x  of 
this section. It is seen the angle of rotation   is equal to the angle between the tangent in point 'C and 
the x -axis. The angle coefficient in point 'C  of the beam axis after deformation is 'wtg  . Because 
of the small angle of rotation   it can be supposed  tg . Thus, the relation between the functions 

of the deflection  xw  and slope  x   is: 
'w .                                        (7.1) 

Then, the conclusion that the beam axis position after deformation is completely known when 
the function  xw  has been derived is made. 

 
 7.2. THE DERIVATION OF THE ELASTIC LINE DIFFERENTIAL EQUATION FOR 
A STRAIGHT BEAM 
 A beam loaded by a set of forces situated in a vertical plane xz  is investigated (fig.7.1). Thus, 
the bending moment obtained is along y -axis. When the straight beam of constant cross-section is 

subjected to special bending, it bends about principal axis y under the action of moment yM  and, 

then, the curvature of the beam axis is:  

y

y

IE

M

R


1 .                  (7.2) 

Here, E  is the modulus of elasticity, R is the curvature radius after deformation, yI  is the 

principal moment of inertia about y -axis. The product yIE  is named the stiffness of the beam 

subjected to bending. 
 If the transverse forces act upon a beam, then the beam axis will not bend in an arc.  

It is allowed the equation (7.2) takes part for every beam section at which the bending moment 

yM acts. It is obvious for the beam of the constant stiffness yIE , when the bending moment yM  

changes, then, the radius of curvature R changes, too. 
 The axis z  in fig. 7.1 is directed down. It is convenient because the loadings in the real 

problems cause the vertical displacements having downward sense. 
 The elastic line curvature   in point 'C  can be expressed by the function  xw  applying the 
well-known equation of Mathematics: 

2/32

2

2

1

1



















dx

wd
xd

wd

R
 .                         (7.3) 

 The strict equation of the elastic line is obtained by the comparison of the right-hand sides of 
(7.2) and (7.3). 

y

y

2/32

2

2

IE

M

dx

wd
1

xd

wd



















.                         (7.4) 
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 This is non-linear differential equation which strict solution is very complex. Because of that 
the equation is rearranged using the condition of the small deformations in a beam – the angle of 

rotation 'w
xd

wd
  has the values from 0,001 to 0,01 rad. Furthermore, the values of 

2









xd

wd
in the 

denominator will be much smaller compared to one. Then, the equation (7.4) can be written in form: 

y

y
2

2

EI

M

xd

wd
 .                          (7.5) 

 Next step is to obtain the correct sign in the equation’s left-hand side.  The elements of the 
beam after deformation are given in fig. 7.2 where the left sketch shows the element subjected to 
positive bending moment while the right one shows the element subjected to negative moment.  

 
Fig. 7.2: The beam elements subjected to bending moment yM  after deformation yM  

 
 It is known from the Mathematics, if the function’s second derivative is positive, then the 
function’s graph is concave and vice versa. Thus, analyzing fig. 7.2, the conclusion that the functions 

 xM y  and 
2

2

xd

wd
)x("w   always have opposite signs can be made.  

Finally, the approximate differential equation of elastic line is obtained: 
   xMx"wEI yy  .                          (7.6) 

 There are some different methods for the determination of the vertical displacements in beams.   
   
 7.3. DIRECT INTEGRATION METHOD   
 This method is applicable in the cases when the whole elastic line of the beam must be found.  
 7.3.1. BEAMS OF CONSTANT CROSS-SECTION 
 The stiffness yIE  has constant value along the beam length. Then, only "w  and yM depend 

on x  in (7.6). This equation can be easily integrated and the function  xw  as well as function 

 x can be directly obtained. The integration is: 

      1' CdxxMxEIxwEI yyy   ;                       (7.7) 

     21 CxCdxdxxMxwEI yy    .                       (7.8) 

 The constants 1C  and 2C  will be derived by the kinematical boundary conditions. They 
correspond to the constraints of the beam and they are related to the deflection w  and the slope . 
 
 

w”(x) > 0 w”(x) < 0 

x

My > 0 My > 0 
My < 0 My < 0 

x

z z
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 a) Simply supported beam acted upon by two moments (Fig.7.3) 

  
Fig. 7.3: Simply supported beam upon which two moments act 

 
 The bending moment is constant MM y  . Then, the differential equation (7.6) takes a form: 

  Mx"wEI y  .                          (7.9) 

 The functions  x  and  xw  are derived by integration: 

    1' CxMxEIxwEI yy   ;                      (7.10) 

  21
25,0 CxCxMxwEI y  .                      (7.11) 

 To obtain the integration constants 1C  and 2C  the kinematical boundary conditions are used – 
the vertical displacements in the both beam ends are equal to zero: 
    0lw;00w  .                        (7.12) 

 Then: 
lM5,0C;0C 12  .                        (7.13) 

 Finally, the functions  x  and  xw  are: 

  lM5,0x.MxEI y  ;                       (7.14) 

  xlM5,0xM5,0xwEI 2
y  .                      (7.15) 

 b) Simply supported beam acted upon by a distributed load of intensity q  (Fig.7.4) 

 
Fig. 7.4: Simply supported beam acted upon by a distributed load of intensity q  

 
 The bending moment function is: 

  xqlxxM y 2

1

2

1 2                                   (7.16) 

The elastic line differential equation (7.6) is: 

  xqlxqxwEI y 2

1

2

1
" 2  .                                 (7.17) 
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 The functions of slope  x  and deflection  xw  are carried out by integration: 

    1
23

4

1

6

1
' CxqlxqxEIxwEI yy   ;                     (7.18) 

  21
34

12

1

24

1
CxCxqlqxxwEI y  .                     (7.19) 

 The integration constants are: 
3

12 24

1
;0 lqCC  .                        (7.20) 

 Finally: 

  323

24

1

4

1

6

1
lqxqlxqxEI y  ;                                (7.21) 

  xlqxqlqxxwEI y
334

24

1

12

1

24

1
 .                     (7.22) 

 
 c) Cantilever beam loaded by a vertical force F  at free end (Fig.7.5) 

 
Fig. 7.5: Cantilever beam loaded by a vertical force F  at free end 

  
Here, the function of yM  is 

   xl*FxM y                          (7.23) 

and, consequently,  xl*F)x("wEI y  .                     (7.24) 

 The functions of  x  and  xw  are: 

    1
2

2

1
' CxFlxFxEIxwEI yy   ;                     (7.25) 

  21
23

2

1

6

1
CxCxFlFxxwEI y  .                     (7.26) 

 The kinematical boundary conditions relates to the rotation and displacement of the fixed 
support which are equal to zero, i.e. 
    00'w;00w  .               (7.27) 

 Thus, the constants are 
0C;0C 12  .                        (7.28) 

 Then, the expressions (7.25) and (7.26) take the form: 

  xFlxFxEI y  2

2

1 ;                       (7.29) 

  23

2

1

6

1
xFlFxxwEI y  .                                 (7.30) 
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 The vertical displacement of the free beam end is 
y

B EI

Fl
w

3

3

 .   

 d) Cantilever beam loaded by a vertical uniformly distributed load of intensity q (Fig.7.6) 
  

 
Fig. 7.6: Cantilever beam loaded by a vertical uniformly distributed load of intensity q  

 
 The bending moment function is 

   2
2

1
xlqxM y  ,                          (7.31) 

and the differential equation of the elastic line takes the form: 

 2
2

1
)(" xlqxwEI y  .                       (7.32) 

 Further, the functions of the slope and deflection are obtained: 

    1
223

2

1

2

1

6

1
' CxqlxqlxqxEIxwEI yy   ;          (7.33) 

  21
2234

4

1

6

1

24

1
CxCxqlxqlqxxwEI y  .           (7.34) 

 The kinematical boundary conditions are the same like the case earlier. Because of that 
0C;0C 21  . 

 Finally: 

  xqlxqlxqxEI y
223

2

1

2

1

6

1
 ;                                (7.35) 

  2234

4

1

6

1

24

1
xqlxqlqxxwEI y  .                                          (7.36) 

 The vertical displacement of the free beam end is 
y

B EI

ql
w

8

4

 .   

 e) Beam containing two or more segments with different equations of the bending 
moment 
 Because of the different bending moment functions the functions of  xw  and  x  are also 
different for each segment. If n is the number of the segments, then the number of the integration 
constants will be 2n. To find them, the kinematical boundary conditions must be written in accordance 
with the supports as well as the segment’s boundary points. Some boundary conditions are given in 
Table 7.1. 
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C

дясно
C
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C ww   ;  

 
Table 7.1 

 
 Then, the expressions of  xw  and  x  for all of the segments are written and the elastic line 
of entire beam is obtained. 
 
 Problem 7.3.1: The beam shown in fig. 7.7 subjected to a vertical force F  has constant 
stiffness yEI . The lengths of the two segments are given as functions of the parameter a . Determine 

the functions of the slope  x  and deflection  xw  in the two segments of the beam applying the 
direct integration method. 

  
Fig. 7.7: Simply supported beam acted upon by a single vertical force 

   
The equation of the bending moment yМ  must be determined for each segment. After that, it 

has to be substituted in equation (7.6) and must be integrated two times. 
 

Segment АС: ax 0  
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 Segment СВ: ax 30   
 

       
4

3

4

Fa
x

F
xМ y  ; 

       
4

3

4
"2

Fa
x

F
xwEI y  ; 

           3
2

22 4

3

8
' Cx

Fa
x

F
xEIxwEI yy   ; 

          43
23

2 8

3

24
CxCx

Fa
x

F
xwEI y  . 

 
 The kinematical boundary conditions necessary to obtain the integration constants are four. 
Two of them are related to the supports – the vertical displacements are not possible, i.e 
   00)1 1 w ;   03)2 2 aw . 
The others are written with respect to the beam section С, which is a boundary section. At this section 
the vertical displacements and the angles of rotation in the left and in the right are equal:  
    0)3 21 wаw  ;    0)2 21  a . 
 The expressions for the integration constants determination are: 
 0)1 2 C ; 

     033
8

3
3

24
)2 43

23  CaCa
Fa

a
F

; 

 41
3

8
)3 CaCa

F
 ; 

 31
2

8

3
)4 CCa

F
 , 

and the constants are obtained 
8

7 2

1
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C  ; 02 C ; 

2

2

3

Fa
C  ; 

4

3 3

4

Fa
C  . 

 Finally, the functions of  xw  and  x  in the two segments take form: 
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2

Fa
x
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xEI y  ;  

4

3
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3

24

32
23

2

Fa
x

Fa
x
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x

F
xwEI y  . 

 
 
 
 7.3.2. BEAMS OF TAPERED CROSS-SECTION 
 The cross-section can change smooth or in steps along the beam length.  Then, the moment of 
inertia yI  is not a constant, but a function of x .  

 The differential equation (7.6) has the form: 
      xMxwxEI yy " .           (7.37) 

a) Beams with smooth change of the cross-section 
The expressions of  x  and  xw  are obtained by integration of (7.37): 
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   
  1

1
Cdx

xI

xM

Exd

wd
x

y

y   ;            (7.38) 

   
  21

1
CxCdxdx

xI

xM

E
xw

y

y 











   .          (7.39) 

 The solution’s procedure is similar like this one of the beam of constant cross-section. If 
 
 xI

xM

y

y  and 
 
  dx
xI

xM

y

y  are functions which can be integrated, then,  x  and  xw  can be 

determined. In opposite case, the method for their approximate calculation must be used. 
 
 Problem 7.3.2.1: The cantilever beam of length l  shown in fig. 7.8 is acted upon by a single 
vertical force F  applied at free beam end. The law of change of the beam’s moment of inertia is 

 
l

lx
IxI y


  while the moment of inertia in section A is a constant II y  . The modulus of elasticity 

Е  is also given.  

 
 Fig.7.8: Beam with smooth change of the cross-section along its length 
 
 In this case, the differential equation of the elastic line has a form (7.37). It is obvious the 
bending moment is   xFxM y   and (7.37) becomes: 

 
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.  

 First, the two sides of this equation are multiplied by x . Then, the integration from A to B is 

made:
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. The integrals in the left-hand side must be solved separately: 
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The solution continues with rearrangements as follows: 
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 . Further, taking into account 0Ax , 0Bw  

and 0B , the expression   
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 b) Beams of cross-section which changes in steps 
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 The beam of n  segments with different moments of inertia niI yi ,...,2,1,  is considered. In this 

case, one of the moments of inertia, for example 10 yII  , must be chosen as a basic one. Further, 0EI -

multiple value of the displacement for every segment must be determined. 
 The differential equation which has to be integrated for the segment with moment of inertia 1yI  

is: 
    xMxwEI y110 "  ,                      (7.40) 

while for the i -th segment it is: 

     xM
I

I
xwEI yi

yi

0
0 "  , ni ,...,3,2 .         (7.41) 

 Problem 7.3.2.2: The beam shown in fig. 7.9 has two segments which lengths are functions of 
the parameter а . The segment AB’s moment of inertia is 1II y   and the ratio 2/ 21 II . The modulus 

of elasticity is E .  Apply the direct integration method to obtain the functions  x  and  xw  for the 
two beam segments. 
 

 
Fig. 7.9: Beam of cross-section which changes in steps along its length 

 
The essential moment of inertia 10 II   is accepted. 

Segment АВ: ax 0  
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 Segment ВС: ax 20   
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    3
2

220 2' CFaxFxxEIxwEI o   ;   43
23

20 3
CxCFaxx

F
xwEI  . 

 The kinematical boundary conditions are: 
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 It is obtained 
2

17 2

1

Fa
C  ; 

3

53 3

2

Fa
C  ; 2

3 8FaC  ; 
3

28 3

4

Fa
C  . 

 Then, the 0EI -multiple values of the functions  xw  and  x  are: 
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Fa
xFaFaxx

F
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7.4. MOHR’S ANALOGY METHOD 

 The direct integration method is convenient when the equation of the beam elastic line must be 
obtained. However, if the beam contains many segments, then the application of this method is very 
clumsy. Besides, in many practical cases only the deflection and slope of definite beam section have to 
be determined. For such cases, the Mohr’s analogy method is developed1.  
 The essence of the method is: The differential equation of the elastic line is written 

   xMxwEI yy " . Under the real beam the second beam of the same length, named fictitious is 

drawn.  The bending moment diagram of the real beam becomes the distributed load of intensity q  

upon the fictitious beam. If the real beam bending moment diagram is positive, then the load q  is 
directed along the positive sense of z axis and vice versa. The supports of the fictitious beam are 

indefinite. It can be noted that they have the support reactions equalizing the load q . 
 The magnitude of the bending moment in every section of the fictitious beam can be carried out 

M . The familiar differential relation    xqx"M   takes part. It is juxtaposed to the elastic line 

differential equation and it is accepted    xMxq y . Thus, the relation    x"Mx"wEI y   is 

obtained. After its integration it is determined    xMxwEI y  . Next step is the differentiation of the 

equation above. After that, taking into account    x'wx   and    xMxV ' , it is obtained 

   xVxEI y  . 

 Finally, the formulas for determination of the deflection w and the slope  in definite section 
of the real beam are: 

yEI

M
w ; 

yEI

V
 .             (7.53) 

 The deflection w of the real beam section is equal to the ratio between the bending moment in 

the same section of the fictitious beam and the real beam stiffness yEI . The slope  of the real beam 

                                                 
1 Christian Otto Mohr (1835-1918) is a German engineer, professor on Mechanics in Stuttgart and Dresden 
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section is equal to the ratio between the shearing force in the same section of the fictitious beam and 
the real beam stiffness yEI . 

 These relations lead to the conclusions, as follows: 

- If the deflection w is equal to zero in some beam section, then the bending moment М in 
the same section of the fictitious beam must be equal to zero, too. 

- If the slope   is equal to zero in some beam section, then the shearing force V in the same 
section of the fictitious beam must be equal to zero, too. 

- If the deflection w and the slope   are different than zero in some beam section, then the 

bending moment М and the shearing force V in the same section of the fictitious beam 
must be different than zero, too. 
The correspondences between the supports of the real and fictitious beams are shown in the 

next table: 
 

      Real 
beam 

 Fictitious 
beam 

 

 

 
 

 

0;0  w  

 

 

 

0;0  VM  

 

 
 

 

0;0  w  

 

 

 

0;0  VM  

 

 

 
 
 

0;0  w  

 
 
 

0;0  VM  

 

 
 

 
 

0  

 

 

 

0V  

 

 
 

 

right
C

left
C

right
C

left ww
C

 

 ;0

 
 

 

right
C

left
C

right
C

left
C

VV

ММ



 ;0

 

 

 

right
C

left
C

right
C

left
C ww

 

 ;
 

 

 

 

right
C

left
C

right
C

left
C

VV
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

 ;
 

                                          Table 7.2 
 
It can be noted that the statically determinate fictitious beam corresponds always to the 

statically determinate real beam. 
The Mohr’s analogy method is appropriate for the determination of the vertical 

displacement w and the angle of rotation   of the definite beam section. Their determination 
follows the steps: 
- The bending moment diagram of the real beam has to be built. 
- The fictitious beam is drawn according to the correspondences in the table above. 

С С

С С
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- The bending moment diagram of the real beam is put as a distributed load q  upon the 

fictitious beam. q  has dimension kNm . 
- The fictitious beam support reactions must be determined. 
- If the deflection w  of the real beam section К must be obtained, then the magnitude of the 

bending moment КМ  in the same section of the fictitious beam must be determined first. It 

has dimension 3kNm . Thus, the deflection is 
y

К
К EI

M
w  . 

- If the slope   of the real beam section К must be obtained, then the magnitude of the 

shearing force КV  in the same section of the fictitious beam must be determined first. It has 

dimension 2kNm .  Thus, the slope is 
y

К
К EI

V
 . 

 
Problem 7.4.1:  A cantilever beam of length l and stiffness yEI  is subjected to a single 

vertical force F at free end. Apply the Mohr’s analogy method to find the vertical displacement 

Аw and the angle of rotation А of the beam free end. 
 

 
Fig.7.12: A cantilever beam subjected to a single vertical force at free end 

 
 First, the real beam bending moment diagram is drawn. After that, the fictitious beam acted 
upon by a distributed load corresponding to the bending moment diagram is built. Then, to find the 

internal forces АV  and АМ  in section А of the fictitious beam, the equilibrium of the left part cut is 

considered and the equation   0V is written. It is obtained 
2
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analogy method АAy VEI   takes part. Thus, the slope in section А is 
y

A EI

Fl

2

2

 . Further, 

applying the equilibrium equation  0М , the bending moment is calculated
3

3Fl
МА  . Finally, 

taking into account АAy МwEI  , the deflection is found 
y

A EI

Fl
w

3

3

 . 

 
Problem 7.4.2:  A cantilever beam of length l  and stiffness yEI  is loaded by a uniformly 

distributed vertical load of intensity q . Determine the vertical displacement Cw  and the slope C  

using the Mohr’s analogy method. 

 
Fig.7.12: A cantilever beam loaded by a uniformly distributed vertical load 

 
 The bending moment diagram of the real beam is built. Then, the fictitious beam acted upon by 
a distributed load corresponding to the real beam bending moment diagram is drawn. To find the 
internal forces of the section С, the left beam part is chosen for investigation. 

The distributed load has a complex shape and it is convenient to be resolved as shown. The 
resultant forces of the distributed load are obtained: 
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 All quantities relating to the fictitious beam are labeled by bar.  
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 Further, the equilibrium equations of the beam part considered are written. 

 

  0V ;  

    0321  CVRRR  ;  0
96328
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qlqlql

;             
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l
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384

17 4ql
M C  . 

 Then, the analogy CCy VEI   и  CCy MwEI   

is applied. Finally, the vertical displacement and the angle of rotation of section С are obtained: 
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In the case of a beam containing the segments of different moments of inertia, to apply the 

Mohr’s analogy method, one of the moments of inertia must be chosen for basic one, first. Then, for 
each segment, the distributed load q  upon the fictitious beam corresponding to the real beam bending 
moment diagram must be multiplied by the ratio between the basic moment of inertia and the moment 

of inertia of the segment considered. Generally, it can be written for the i -th segment 
i

O
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I
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When the distributed load is parabola, its maximum /in the middle/ can be calculated by the 

formula: 
i

O

I

Iql
f

8

2

 . Here, iI  is the moment of inertia of the segment upon which the distributed load 

in the shape of parabola acts. 
 If the beam has tapered section along its length, i.e. the moment of inertia is a function  xI , 

OI  /basic/ will be the moment of inertia of the definite section. Then, the fictitious load will be found 

by the equation:    xI

I
xMq 0 .  

The bending moment and the shearing force in the random section of the fictitious beam are 
related to the deflection and slope in the same section of the real beam by formulas: 

wЕIM O ; OЕIV  . 

 
 Problem 7.4.3: A steel beam is supported and loaded, as shown. The moment of inertia in the 
segment АВ is 4

1 11620cmI  , while the moment of inertia in the segment ВС is 4
2 5500cmI  . The 

modulus of elasticity is 2/20000 cmkNЕ  . Apply the Mohr’s analogy method to determine the slope 
  of the beam section А and the deflection w  of the beam section В. 
 The bending moment diagram of the Gerber beam considered is built and the fictitious beam is 
drawn under it. The fictitious beam in the segment АВ which has the moment of inertia 4

1 11620cmI   
is loaded by a distributed load corresponding to the bending moment diagram in the same segment. In 

the segment ВС the load values are multiplied by the ratio 113,2
5500

11620

2

1 
I

I
, because the formula 

2

1

I

I
Mq   takes part.                                                                                                                                            

  
 
   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.13: Gerber beam 

30 kNm 50 kNm20 kN/m

C

B 

А 

1I  2I  

6 m 2,1 

65,5 kNm       

55 kN   65 kN   

30 
65,5  

50 
75,625

M  

30 

75,625
105,650 

138,402 

+  

- 

А 
B 

C



54 

 After that, the distributed load acting upon the fictitious beam in the two segments is resolved 
into simpler figures. In this manner, the resultant forces are calculated easier:  

 
 

;3606.90.
3

2
.

3

2
;901.

8

6.20

2
;90

2

6.30 2
2

2

1

1
2

2
1 kNmflRkNm

I

Iql
fkNmR   

2
4

2
3 322,145

2

1,2.402,138
;932,110

2

1,2.650,105
kNmRkNmR  . 

 
 
 
 
 
 
 
 
 
 
 
 

 
 Next step in the solution is the support reactions determination. 

  0H ; 0HA ; 

  0AM ; 064,7.322,1457,6.932,1103.3602.90  B ; 862,5676 B ; 2644,94 kNmB  ; 

  0BM ; 064,1.322,1457,0.932,1103.3604.90  VA ; 798,8456 VA ; 2966,140 kNmA V   

- Check:   0V ;  0322,145932,110644,9436090966,140  ; 470,932 470,932 0  . 

According to the Mohr’s analogy method BB MwEI 1 . This means that the bending moment in 
the section В of the fictitious beam has to be found first. The well-known method of section is used.  

105,650

138,402 

30  
2 m  

1R  

3 3

2R

1,4 0,7

0,7 1,4

3R

4R

2 m 

B CА 

3 

6 2,1 

0,7 
1,4 

901 R  
3602 R  932,1103 R  

322,1454 R  

0HA  

966,140VA  644,94B  
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  0M ; 

03.3604.906.966,140 BM ; 

 3796,125 kNmM B  . 
3

1 796,125 kNmwEI B  .  
384

1 10.324,211620.10.2 kNcmEI  ; 

cmwB 541,0
10.324,2

10.796,125
8

6

 . 

 
 The slope   of the section А 
must be determined, too. Considering 

the relation АА VEI 1  , the 
conclusion that the shearing force 

АV must be found first, is made. 
 

        The method of section is applied again: 

  0V ; 0966,140  AV ; 2966,140 kNmVA  . 

 Then: 2
1 966,140 kNmEI A  . 

 Finally: 

 0
0

8

4

348,0
180

.00607,000607,0
10.324,2

10.966,140



 radA . 

 
 

 
7.5. STATICALLY INDETERMINATE BEAMS SUBJECTED TO BENDING  

 In the case of the externally statically indeterminate beams the number of the statical unknowns 
(support reactions) is bigger than the number of the equilibrium equations which can be used. Thus, if 
the elastic line of the beam has to be obtained not only the kinematical initial parameters exist but also 
the unknown statical. Then, the kinematical as well as the dynamical boundary conditions must be 
written for their determination. The dynamical boundary conditions include the bending moments and 
the shearing forces in the definite beam section. 
   
 Problem 7.5.1: The beam given has a length l  and stiffness EI  and it is acted upon by a single 
force F , as shown. Determine the EI -multiple value of the deflection’s functions  xw  in the two 
segments.   

 
     Fig.7.14: Statically indeterminate beam subjected to bending 
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 The beam given contains 4 support reactions while the number of the equilibrium equations is 
3. Then, the beam has 4-3 = 1 degree of the statical indeterminacy.  
 The force F  divides the beam into two segments. The distance x  is measured from the left 
beam end for the both segments.  
 The mixed kinematical and dynamical boundary conditions are written: 
   00)1 1 w ;   00)2 1  ;   0)3 2 lw ;   0)4 2 lM . 
 Further, the universal equation of the elastic line is written for the two segments: 

       32
001 0

!3
0

!2
 x

А
x

M
xEIEIwxEIw VА ; 

      
3

32
002 2!3

0
!3

0
!2







 

l
x

F
x

А
x

M
xEIEIwxEIw VА . 

To justify the boundary condition 2) the following differentiation is made:  

    
2

'
2

011

xА
xMEIxEIwxEI V

А   . 

 To justify the boundary condition 4) the expression for the bending moment 2M  must be found 
– the differential equation of the elastic line for the second segment is written: 
    xMxEIw 22"  , 
and it is obtained:  

   





 

22

l
xFMxАxM AV . 

 Then, the kinematical boundary conditions 1) and 2) are justified: 

 1)   00.
!3

0.
!2

0.0 32
001  VА АM

EIEIwEIw  ; 

 2)   0
2

0.
0.0

2

01  V
А

А
MEIEI  , 

and it is carried out 00 EIw , 00 EI . 

 Thus, the equation of  xEIw2  becomes: 

  
3

32
2 2!3!3!2







 

l
x

F
x

А
x

M
xEIw VА . 

 Further, the conditions 3) and 4) are written: 

 3)   0
2!3!3!2

3
32

2 





 

l
l

F
l

А
l

M
lEIw VА ; 

 4)   0
22 





 

l
lFMlАlM AV , 

and the support reactions are calculated 
16

3
,

16

11 Fl
M

F
А AV  . 

 Finally, the functions defining the elastic line are obtained:  

  23
1 32

3

96

11
x

Fl
x

F
xEIw  ; 

   2
3

3
2 32

3

2!396

11
x

Fll
x

F
x

F
xEIw 






  . 

 If the diagrams of the bending moment  xM  and the shearing force  xV  have to be built, then 

the differential equations    xMxEIw "  and    xVxМ '  will be applied.  



57 

 7.6. THE INFLUENCE OF THE SHEARING FORCE ON THE ELASTIC LINE 
DIFFERENTIAL EQUATION  

The elastic line differential equation    xMxwEI yy "  is valid in the case of pure bending 

only. If the shearing force  xVz  exists in the beam, then, this equation will change. To derive the new 
relation of the beam elastic line the principle of superposition must be applied. 
 The deformation of the infinitesimal beam segment of length xd  subjected to the shearing 

forces zV  only is considered. This is the well-known loading conditions when the shearing forces’ 

influence must be found. In such case the shearing forces zV  will cause the displacements of the beam 
sections in two parallel planes where the right situated section will move downward with respect to the 
left situated section. 

 
   Fig. 7.15: A beam element subjected to pure shearing 
  
 In the case of the beam subjected to pure shearing all of the points of the right situated section 
have equal vertical displacements Vwd  after the deformation. These vertical displacements are very 

small and they are supposed to be arcs. Their magnitudes are: 
 xdwd xzV  .            (7.54) 

 According to the Hook’s law the relation between shearing stresses and strains is 
 xzxz G  ,              (7.55) 

where G  is the shear modulus.       
 In the other side, the shearing stresses caused by zV  can be represented as 

 
A

V
k z

xz  ,             (7.56) 

where k  is the shear coefficient and А  is the area of the cross-section. 
 After equalizing of the right-hand sides of (7.55) and (7.56) it is obtained for shearing strains: 

 
GA

V
k z

xz  .             (7.57) 

 Then, the vertical displacement Vwd  is expressed by shearing force zV  in the manner 

 xd
GA

V
kwd z

V  .            (7.58) 

xd

zV  

zV

xz
xz

xz

xz

xz
Vwd

Vwd

Vwd

x

z
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 Thus, it is determined
GA

V
k

dx

wd
w zV

V ' . After differentiation it is obtained 

 
dx

Vd

GA

k

dx

wd
w zV

V .
'

"  .            (7.59) 

 Further, using the differential equation q
dx

Vd z  , where q  is the intensity of the distributed 

load, it is found 

 
GA

q
kw V " .               (7.60) 

 If in some problem the influence of the shearing force must be determined only, then, the 

differential equation 
GA

V
kw z

V '  will be integrated. It will be obtained 1CdxV
GA

k
w

zV   , where 1C  

is a constant which will be found applying the kinematical boundary condition. 

 Then, using the differential relation z
y V

dx

dM
 , it is obtained  

    1CxM
GA

k
xw yV  .            (7.61) 

 Formula (7.61) shows that the elastic line caused by the shearing force zV  only has the same 
shape like the bending moment diagram. 
 In the case of a beam subjected to pure bending the differential equation of the elastic line is: 

 
y

y

EI

M
w " . 

 The shearing force is taken into account by the principle of superposition, namely by adding of 

the expression 
GA

q
k  in the right-hand side in the formula above. 

 Thus, the elastic line differential equation in the case of the beam subjected to bending 
combined with shear is: 

 
GA

q
k

EI

M
w

y

y " .            (7.62) 

 Further, the function of the vertical displacements is obtained by integration.  
The shear coefficient k  taking part in expression (7.62) is determined in Chapter 11: 

 
 
  


A

y

y

dA
zb

zS

I

A
k

2

2

2
.                                  (7.63) 

 It is obvious that only geometrical characteristics of the cross-section are used, as follow: A  - 
the cross-sectional area; yI - the moment of inertia about y -axis;  zb - the width of the cross-section 

in the random level;  zS y  - the statical moment about y -axis of the portion of the cross-section 

under or above the level considered. The values of the shear coefficient for common geometrical 
shapes are: 
 - 2,1k for rectangular cross-sections; 
 - 9/10k  for solid circular cross-sections; 
 - 2k  for high I-profiles cross-section and 4,2k  for low I-profiles cross-section. 
  
 Problem 7.6.1:  Find the midsection’s deflection of the beam shown in the fig. 7.4, if the 
influence of the shearing force is taken into account. The beam has rectangular cross-section and the 
Poisson’s coefficient is 25,0 . 
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 To find the midsection’s deflection the principle of superposition has to be applied where the 
influences of the bending moment yM and the shearing force zV  must be taken separately:  

      xwxwxw VMy  . 

 Using the function (7.22) it is determined 
y

My EI

qll
w

384

5

2

4









 . 

 To take into account the influence of the shearing force the expression (7.61) is used where the 
integration constant 01 C  is obtained by the kinematical boundary condition   00 w . Then, it is 
determined:  
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 . 

 After that: 
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The expression above can be represented in the manner: 
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 Further, applying the relation  
12

E
G  it is found     5,225,01212  

G

E
. 

 Finally: 
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 It is obvious, if the ratio 
h

l
 is equal to 10, then the influence of the shearing force on the 

vertical displacement will be equal to 2,4%.  
   
 7.7. DETERMINATION OF THE ELASTIC LINE EQUATION IN THE CASE OF A 
BEAM SUBJECTED TO DOUBLE BENDING 
 The elastic line determination in the case of a beam subjected to double bending is more 
complicated than this one in the case of special bending. 
 Here, the Bernoulli’s hypothesis says that each beam section has rotated about the neutral axis 
and the random longitudinal beam fibre belongs to the plane normal to the neutral axis after 
deformation. 

In the case of a beam subjected to double bending the bending moments about the principal 
axis y  and z  are different than zero. The normal stresses caused by these moments are 

 y
I

M
z

I

M

z

z

y

y
x  ,            (7.64) 

and the equation of the neutral axis n  is 

 y
I

I

M

M
z

z

y

y

z .               (7.65) 

 It is seen from (7.65) that the neutral axis in the case of a beam subjected to double bending 
does not coincide to the principal axis y  and it changes its position with respect to the principal beam 
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axis y  and z  for every beam section. Then, the random longitudinal beam fibre will deform in 
different way for different beam section. It is following from this that the beam axis after deformation 
will be the spatial curve and for its determination the deflections’ functions  xw  and  xv  must be 

found separately applying the principle of superposition. Here,  xv  is the function of the deflections 
along the principal axis y .  

 First, the forces acting in the plane xz  are considered – they cause the bending moment yM . 

Then, to determine the deflection’s function  xw  the familiar differential equation (7.6) has to be 
integrated. 

After that, the loads acting in the plane xy  are investigated. They cause the bending moment 

zM  and give the deflections  xv  along the y -axis – the differential equation of  xv  can be derived. 

For that purpose, the elastic line’s curvature due to the bending moment zМ  only is considered. To 
obtain the correct sign in the equation’s right-hand side the two sketches of the beam axis deformation 
are drawn, as follow:                       

 
Fig.7.16: The beam elements subjected to zM  after deformation 

 
 It is obvious that "v and zМ  have the same sign. Then, the differential equation of  xv  has the form: 

 
z

z

EI

M
v " .             (7.66) 

 Next step is the integration of this differential equation.  
 Finally, the method of superposition must be applied. If the displacement Md  of the beam 

section М at a distance Mx  from the beam left end must be determined, then the deflections  Mxw  

and  Mxv  have to be found applying expressions (7.6) and (7.66), respectively. Using the fact, that 

they are perpendicular to each other, it will be obtained    MMМ xvxwd 22  . 

v”(x) < 0 v”(x) > 0 

x

Mz > 0 Mz > 0 
Mz < 0 Mz < 0 

x

y y
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CHAPTER 8 

 

MOMENTS OF INERTIA 
 

 

8.1. DEFINITION 
 8.1.1. MOMENTS OF INERTIA ABOUT AXES 
 A plane figure representing cross-section of a beam is considered. The figure contains an 

infinite number of elements of area dA , as shown in fig.8.1. Then, the total area of the cross-section 
will be 

 

А

AdА .               (8.1) 

Area is the simplest geometrical characteristic of the cross-section and it has dimension 
length2. The area is always positive and does not depend on the coordinate system chosen. 

 
Fig. 8.1: Cross-section of a beam 

 
The moments of inertia about axes y and z , respectively, are defined by integrals 

 

А

y AdzI 2 ;  

    (8.2) 

 

А

z AdyI 2 .               

 8.1.2. POLAR MOMENT OF INERTIA 
Polar moment of inertia or moment of inertia about a point (pole) is  

 

А

O AdI 2 ,              (8.3) 

where   is the distance from the area Ad  to the pole – point O . 
If the pole about which the polar moment of inertia must be calculated is the origin of the 

coordinate system, then, 222 zy  , and  

     
 
ААА

O AdzAdyAdI 222 .                (8.4) 

Therefore 

zyO III  ,               (8.5) 
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i.e., the sum of the moments of inertia about two axes perpendicular to each other and passing through 
a given point is equal to the polar moment of inertia about the same point. 

 
 8.1.3. PRODUCT OF INERTIA 
Product of inertia of the figure about axes y  and z  is 

 

А

yz AzdyI .              (8.6) 

If the cross-section has axis of symmetry, then the product of inertia about that axis will be 
equal to zero. 

 
Fig. 8.2: Cross-section possessing the axis of symmetry 

 
It can be seen in fig. 8.2 when the figure has the axis of symmetry it always can be separated 

into two parts having similar coordinates. Besides, the difference between the coordinates is in the sign 
only: zzz  21  and yy 1 yy 2 . Then, calculating the product of inertia it is obtained: 

 
  0

22

 














 ААА

yz AzdyAzdyAzdyI .                     (8.7) 

 
The moments of inertia have dimension length4.  
The moments of inertia about axes and the polar moment of inertia are always positive while 

the product of inertia can be positive, negative or even zero. 
 
 8.2. MOMENTS OF INERTIA OF THE RECTANGLE 
 

 
 

Fig. 8.3: Rectangle 
 



63 

Here, the infinitesimal area is 
zdydAd  .                   (8.8) 

Then, joining the first of expressions (8.2) and expression (8.8) and performing the following 
transformations it is carried out: 

    128822

3332

2

2
2

2

22 hbhhbb
zdzydzdydzAdzI

h

h

b

bАА
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


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









  



;           (8.9) 

Further, repeating the same action about the second expression of (8.2) and expression (8.8) it 
is obtained: 

12

3bh
I z  .             (8.10) 

The rectangle has two axes of symmetry and because of that: 
0yzI .             (8.11) 

Finally, the expressions (8.9) and (8.10) are substituted in (8.5) and it is found: 

   2222
33

12121212
hb

A
hb

hbbhhb
I O  .         (8.12) 

 
8.3. THE PARALLEL AXES THEOREM (STEINER’S THEOREM) 
 

 
Fig. 8.4: Cross-section of a beam with two coordinate systems parallel to each other 

 
Let y  and z  to be the central axes about which the moments of inertia yI , zI  and the product 

of inertia yzI to be known. Let the axes 'y  and 'z  to be parallel to the axes y  and z , respectively.  

The task is the moments of inertia 'yI , 'zI  and the product of inertia ''zyI to be found. 

Solution: 
Let Ad  to be an infinitesimal area in the vicinity of point M of coordinates y  and z .  
Then, applying the first formula of (8.2) it is obtained: 

 

А

y AdzI 2
' ' .            (8.13) 

Further, investigating fig. 8.4 it is evident 
zzz C  '' .             (8.14) 

The expression (8.14) is substituted in (8.13) and the transformations are made, as follow: 
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 
       

 
А

C

А

C

АА

Cy AdzAdzzAdzAdzzI 222
' ''2' .       (8.15) 

After that, using (8.2) it can be seen that the first integral in the right-hand side is the moment 
of inertia 'yI  while applying (8.1) it can be determined that the third integral is the figure’s area A .  

The coordinate of the figure’s center of gravity is found by the well-known formula of 
Theoretical mechanics: 

 

А

Adz

z А
C


 ,             (8.16) 

where 
 

А

y AdzS  is the statical moment about  axis y . 

But 0Cz  and
 

0
А

Adz . 

Then, the expression (8.15) will be 
2

' 'Cyy zАII  .            (8.17) 

Similarly, the following relations are derived 
2

' 'Czz yАII  .            (8.18) 

''' CCyzyz zАyII  .            (8.19) 

 
8.4. RELATIONS BETWEEN THE MOMENTS OF INERTIA ABOUT AXES 

ROTATED TO EACH OTHER  
 

 
Fig. 8.5: Cross-section of a beam with two coordinate systems rotated to each other at an angle    

 
Let y  and z  to be the central axes about which the moments of inertia yI , zI  and the product 

of inertia yzI to be known.  Let the axes 'y  and 'z  to be rotated at an angle   with respect to the axes 

y  and z . Now, the aim is the moments of inertia 'yI , 'zI  and the product of inertia ''zyI to be 

obtained. 
Solution: 
The relations between the coordinates of a point M with respect to two coordinate systems are: 

 sincos' zyy  ,  cossin' zyz  .        (8.20) 

First, the moment of inertia 'yI  will be represented in form (8.13). Then, the second expression 

of (8.20) will be substituted in (8.13): 
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 
       

 
АААА

y AdzAyzdAdyAdzyI 22222
' coscossin2sincossin  .    (8.21) 

Further, the trigonometric relations are used: 

 cossin22sin;
2

2cos1
cos;

2

2cos1
sin 22 





 .      (8.22) 

Formulas (8.2) and (8.6) are replaced in (8.21) and it is obtained: 

yyzzy IIII
2

2cos1
2sin

2

2cos1
'

 



 .        (8.23) 

The final form of expression for moment of inertia 'yI is 

     2sin2cos
2

1

2

1
' yzzyzyy IIIIII  .        (8.24) 

The moment of inertia 'zI  and the product of inertia ''zyI  are obtained in similar way: 

     2sin2cos
2

1

2

1
' yzyzzyz IIIIII  .        (8.25) 

   2sin2sin
2

1
''' yzzyzy IIII  .         (8.26) 

As a conclusion, it can be said that the sum of the moments of inertia about two axes 
perpendicular to each other remains constant: 

Ozyzy IIIII  '' .             (8.27) 

 
8.5. PRINCIPAL MOMENTS AND PRINCIPAL AXES OF INERTIA 
The moments of inertia about principal axes have extreme values relative to the all moments of 

inertia. Besides, the product of inertia about the same axes is equal to zero.  
The moments of inertia about the principal axes are called principal moments of inertia. They 

can be determined by the formula: 

22
minmax,2,1 22 yz

zyzy I
IIII

II 






 



 .         (8.28) 

Angles 1 and 2  which the principal axes of inertia make with the horizontal axis y  can be 
found by expression: 

zy

yz

II

I
tg




2
 ,               (8.29) 

where the relation
212

   exists. 



66 

CHAPTER 9 

 

TORSION 

 

9.1. DEFINITION 

 Torsion is a type of deformation in which the transverse sections of a beam twist relative to 
each other under the action of external torsion moments only. The external forces situated 
normally to the beam axis cause the torsion moments because they do not intersect the axis. The 
torsion moments’ planes of action are perpendicular to the longitudinal beam axis. 

The pure torsion conditions in the curved beams might be caused by different loading 
configuration than mentioned above. As an example, in the thin-walled beams the torsion can arise if 
the point of application of the transverse force does not coincide with the cross-section’s shear center 
(center of twist); in this case, the torsion is combined with bending.  However, if the bending moment 
is very smaller with respect to the torsion one, then the case of a pure torsion has to be investigated.  

In practice, the shafts, the coil springs and other machines are predicted to work in pure torsion 
conditions. 

 
Fig. 9.1: Beam working in pure torsion condition 

Pure torsion obeys the condition at any beam section only the torsion moment T to be 
different than zero, i.e.  

0;0  zyzy MMVVNT .                     (9.1) 

 

9.2. THE TORSION MOMENT DIAGRAM  

The beam shown in fig.9.1 is considered and the method of section is applied. The beam part 
loaded by a small number of external moments is chosen for investigation and the positive sense of the 
torsion moment is introduced, as follow: if the torsion moment rotates in the counterclockwise 
direction when we look at the section cut, then its sense is positive and vice versa. 

 
Fig. 9.2: The torsion moment in beam section nn   
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The moment equilibrium equation about the longitudinal beam axis for the beam part chosen 
must be written. In this way, it can be concluded that the torsion moment is equal as a magnitude 
and opposite as a sense to the external moments acting upon the beam part considered.     

 
 Build the torsion moment diagrams of the beams shown in Problems 9.1 and 9.2. 
 

Problem 9.1  
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 9.3: A beam working in pure torsion conditions 
 

Because of the loading, only the moment CM  situated in the fixed support, as shown, is the 

unknown support reaction and it will be determined by the condition:  

kNmTTM CCx 20;01030;0  . 

The beam contains two segments. They will be considered separately and the functions of the 
torsion moments will be obtained, as follow: 

 

I segment: 20  x m 
 
 
  
 

kNmTTM x 10;010-;0 11  . 
 

I I segment: 3mx0   
 
 
 
 
 
 

kNmTTM x 0-2;0-20-;0 22  . 
 

- Torsion moment diagram 
Note: The positive values of the torsion moment diagram have to be drawn above the zero line!  
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Problem 9.2  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9.4: A beam working in pure torsion conditions 
 
The uniformly distributed torsion moment of intensity '/12 mmkN  is applied in the segment 

AB. It will be substituted for a resultant torsion moment of magnitude equal to the product between the 
distributed moment intensity and the length of the segment.  

After that, to find the moment support reaction, the relevant equilibrium equation will be 
written: 

kNmTTM AAx 14;010-2.12-;0  . 

Next step in the solution is the torsion moment functions determination: 
 

I segment: 20  x m 
 

 
 
  
 

;41-12x;014-12x;0 11  TTM x   kNm;140T1    kNm-10142.12-21 T  
 

I I segment: 20  x m 
 
 
 
 
 

kNmTTM x 01-;0-81-;0 22  . 
 

- Torsion moment diagram 
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9.3. BEAMS OF SOLID CIRCULAR AND HOLLOW CIRCULAR CROSS-SECTIONS 

The type of the cross-section influences too much on the stresses and strains in beams subjected 

to a pure torsion. 

9.3.1. STRESSES  

The experiment with the rectilinear beams of solid circular cross-sections has been made, as 

follow: The web of lines is drawn on the beam surface. Some of the lines are rectilinear and parallel to 

the longitudinal axis while the others are circles lying in the planes which are normal to the beam axis. 

Thus, the rectangles on the cylindrical surface are obtained. Every cross-section has definite points 

onto the circle through which the radial lines are built.    

Then, the beam is loaded so that the pure torsion conditions to be performed and it is concluded 
after deformation: 

- All of the lines parallel to the beam axis have rotated at the same angle γ  with respect to their 
initial positions. Besides, the rectangles onto the cylindrical surface have become parallelograms; 

 
 
 
 
 
 
 
 

Fig. 9.5: Deformation of a beam working in pure torsion conditions 
 
- The beam cross-sections remains plane, circular, and at the same distances relative to each 

other as in the beginning; 
- Any beam section has been rotated at an angle φ, named angle of twist relative to its initial 

position, i.e. the section rotates with respect to the beam axis as the rigid plate do; 
- The radial lines remains rectilinear and the lengths of the radii do not change.   
On the basis of the experiment, it can be concluded that the Bernoulli’s hypothesis takes place, 

namely the plane sections before deformation remain plane after deformation. Besides, since the 
torsion moments only act in the cross-sectional planes, the shearing stresses arise there, while the 
normal stresses are equal to zero. Furthermore, according to the theorem of the shearing stresses 
equivalence it is proved that the shearing stresses in the longitudinal beam sections are equal to 
these ones in the cross-section. 

Then, to determine the stresses, the beam working 
in pure torsion conditions will be examined, as follow: 
The beam section at distance x  from the left end is given 
in Fig. 9.6. The torsion moment in the section is labelled 
by T  and it is the internal force different than zero only. 
T  must be represented as a sum of the moments about 
the cross-section’s center of gravity С of the forces 
perpendicular to the radii passing through their points of 
application. The forces like these are directly related to 
the shearing stresses.  

Thus, the stress conditions in a beam working in 
pure torsion are similar to these ones in a beam working 

γ 

φ

T 

 

τxdA 
ρ 

dρ 

C 

Fig. 9.6: 
Cross-section of a beam working 

in pure torsion condition 

dA
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in pure shear, i.e. in the both cases the shearing stresses only exist.   
Further, infinitesimal force dAx  acting upon infinitesimal plane dA  will be considered 

(Fig.9.6). The moment of the force about the beam axis is   dAx . Then, the torsion moment in the 

cross-section Т is: 

 
dAT

А

x  .                                   (9.2) 

The integration will be made when the law of shearing stresses distribution in the cross-
sectional plane is obtained, as follow:  

Two cuts through the beam separate a portion of length dx  and thickness d . The left section 
of the portion has to be supposed fixed. Then, under the action of the torsion moments the right section 
will rotate relative to the left one at an angle d , while every generant will rotate at an angle   with 
respect to its initial position. Angle  is the angle of relative torsion. The positions of infinitesimal 
beam portion, generant DB and radius CB  before and after deformation are given in Fig. 9.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.7: Infinitesimal portion of a beam working in pure torsion 
 

The length of the arc 1BB  can be represented in two manners: 

   dddBB 1              (9.3) 

 dxBB x1 .               (9.4) 

The shear strain is determined by comparing of the two right-hand sides: 

dx

d
x

  .                         (9.5)

 According to the Hook’s law: 

xx G  .                         (9.6) 

The shearing strain x  from (9.5) is substituted in (9.6) and the shearing stresses are: 

dx

d
Gx

  .                             (9.7) 

Further, expression of x  is put in (9.2): 

 
dA

dx

d
GT

А



 

dA
dx

d
G

А

2
 .                                           (9.8) 

 
dAI

А

t
2  is the cross-sectional polar moment of inertia. 

Then, (9.8) becomes: 

dx

γ dφ

dρ

ρ
D 

B

B1

C

dA
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tGI

Т

dx

d



.               (9.9) 

Finally, taking 
dx

d
 from (9.9) and putting it in (9.7), for x  is obtained: 


t

x I

T
 .             (9.10) 

It is obvious the shearing stresses function is linear with respect to the distance from the 
cross-section’s center of gravity to the random cross-section’s point.  

The shearing stresses in a beam working in pure torsion are directly proportional to the 
distance from the cross-section’s center of gravity to the point considered. When 0 , from  (9.10)  

follows 0x . The shearing stresses have the biggest values when R :  

R
I

T

t

max .             (9.11) 

The shearing stresses distribution of the solid circular and the hollow circular cross-sections are 
shown in Fig. 9.8.  

 
Fig. 9.8: Shearing stresses distribution 

 
The ratio between the cross-section’s polar moment of inertia and the radius, labeled by tW , is 

named section modulus of a beam working in pure torsion conditions: 

R

I
W t

t               (9.12) 

Then, the maximum shearing stresses in the cross-section are: 

tW

T
max .             (9.13) 

It can be said as a conclusion, the experiments show that all of the expressions derived for solid 
circular members working in pure torsion can be applied in the case of the hollow circular cross-
sections. 

 
9.3.2. DETERMINATION OF THE POLAR MOMENT OF INERTIA tI  AND 

SECTION MODULUS tW  

The solid circular cross-section of radius R  is considered where the part of thickness ρd  is 
detached from the beam (Fig.9.6). This part must be divided into the infinitesimal segments of 
areas Ad . All of them are situated at a distance   from the cross-section’s center of gravity С. Thus 
the polar moment of inertia of the part detached is:  

AdAdAI
Aa

t
222                        (9.14) 

The area of the part considered can be determined by the expression: 

T 

C 

τmax 

R

C

τmax

Rr

T
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dA 2 .             (9.15) 
Then, after substitution of (9.15) in (9.14), it is obtained  

 dIt
32 .             (9.16) 

Further, to determine the polar moment of inertia of the entire figure, the integration will be 
made, as follow: 

 
2

4/22
4

00

43 R
dI

RR

t

   .          (9.17) 

The expression of the polar moment of inertia with respect to the diameter D  of the solid 
circular cross-section is: 

2

4D
It


 .               (9.18) 

The section modulus will be carried-out from (9.12): 

162

33 DR
Wt


 .            (9.19) 

If the circular cross-section is hollow of external radius R  and internal radius r , then the polar 
moment of inertia tI  and the section modulus tW  will be obtained by the expressions: 

 4443 -
2

)4/(22 rRdI
R

r

R

r

t

   .        (9.20) 

It is obtained after substitution
R

r
 : 

 4
4

-1
2

R
It  ;  4

3

-1
2

R
Wt  .         (9.21) 

 
9.3.3. DESIGN OF THE CIRCULAR BEAMS 
 
The main restriction is the biggest shearing stresses in the beam working in pure torsion 

conditions to be smaller than allowable ones:  
 

allow
tW

T
  max

max  , 

allow
t

T
W


max . 

The diameter of the beam will be carried-out applying the condition mentioned above: 
- solid circular cross-section 

3
max16

allow

T
D


 ; 

- hollow circular cross-section 

3
4

max

)1(

16

allow

T
D

 
 . 
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9.4.  BEAMS OF SOLID NON-CIRCULAR CROSS-SECTION 
 The determination of the stresses in a beam of solid non-circular cross-section working in pure 

torsion conditions is a very complicated problem and it can not be solved by the Strength of materials 
methods. The reason is the different type of deformation leading to the Bernoulli’s hypothesis 
invalidity. The beam sections warp and thus the shearing stresses distribution change essentially. Then, 
to determine the shearing strains the mutual twist as well as the warping of the beam sections has to be 
taken into account. The strict solution of the problem is done by the Theory of elasticity.  

 Some special features of the shearing stresses distribution in the non-circular cross-sections can 
be noted: If the cross-section of the beam has external corners, then, the shearing stresses in these 
corners are equal to zero; If the beam surface is free of load, then, the shearing stresses in the sections 
situated normally to the beam’s contour are also equal to zero. 

 The Theory of elasticity methods gives the equations about the shearing stresses distribution in 
common cross-sections. In the case of more complex cross-section the shearing stresses distribution 
might be obtained by the analogy method of Prandtl1. 

  The beam of rectangular cross-section working in pure torsion is well-known problem in 
engineering practice. Theory of elasticity shows that the maximum shearing stresses are situated in the 
middle of the bigger side of the rectangle. The shearing stresses distribution in the beam of rectangular 
cross-section is shown in fig. 9.9. 

 
Fig. 9.9: Shearing stresses distribution 
 

First, the ratio 
b

h
n   must be calculated. Then, according to this ratio, the coefficients k,,   

have to be determined using Table 9.1.  
 

b

h
=n  

 
1 

 
1,2 

 
1,4 

 
1,6 

 
1,8 

 
2 

 
2,25 

 
2,5 

 
3 

α  0,208 0,263 0,316 0,374 0,432 0,492 0,567 0,645 0,801 
β  0,140 0,191 0,255 0,331 0,396 0,458 0,531 0,612 0,780 

k  1,000 0,944 0,887 0,843 0,811 0,795 0,785 0,775 0,753 
 

Table 9.1: Coefficients k,,   depending on the ratio 
b

h
n   

 

It was established, the values of coefficients α  and β  tend to 3/1  when the ratio 
b

h
n   is very 

small.  

                                                 
1 Ludwig Prandtl (1875-1953) is a German physician, professor in Hannover and Goettingen. 
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The polar moment of inertia and the polar section modulus will be found applying the formulas: 
34; bWbI tt   .                                            (9.27) 

The shearing stresses in the typical cross-sectional points A and B are obtained by equations: 

AB
t

A k
W

T   ;max .                                (9.28) 

 
9.5. STATE OF STRAIN 
 
The expression (9.9) is written in a form: 

xd
GI

Т
d

t

 .            (9.29) 

Then, it is obtained after integration: 

  1Cxd
GI

Т
x

t

  .           (9.30) 

To determine the constant 1C  the boundary condition must be used. If the beam has one 
segment, then the twist in the fixed support is equal to zero. However, if the beam has many segments, 
then the torsion moment function will be different for each one of them. Consequently, according to 
(9.30), the function of ( )xφ  will be different for every segment, too. As an example, if the beam has 
two segments, then (9.30) will take the form: 

  1
1

1

1

Cxd
GI

Т
x

t

  ;           (9.31) 

  2
2

2

2

Cxd
GI

Т
x

t

  .           (9.32) 

The integration constants 1C and 2C  will be found using the boundary conditions: 
- the twist in the fixed support is equal to zero; 
- the twists in the boundary section are equal to each other. 
 
Problem 9.5.  Suppose that the beam in problem 9.2 has two segments of different polar 

moments of inertia and their ratio is 2,1/ 21 tt II . Build the )(1 xGIt  - diagram. 

 
The expressions 41+-12x=T 1 and 01-=T 2  of the torsion moments functions in the two 

segments, are substituted in (9.31) and (9.32), respectively. It is obtained: 

  1
2

111 146-)1412( CxxCdxxxGIt   ; 

  22
2

1
21 )10(2,1)10( CxCdx

I

I
xGI

t

t
t   . 

The twist in the fixed support is equal to zero, i.e.   0011 tGI . It is carried-out: 

  00.140.6-0 1
2

11  CGJt  , 01 C . The twists in the boundary section are equal to each other, 

i.e.    02 2111  tt GIGI  . Then: 21
2 -12.02.142.6- CC   and kNmC 42  . 

The expressions of 1tGI - functions of twists are:   

  xxxGIt 146- 2
11  ;   412-21  xxGIt  . 

The graphs are given in fig. 9.4. In accordance with relation (9.9) the function of twist  x has 
extremum in the beam section where the torsion moment function is equal to zero. Because of that, to 
draw the  xGIt 11 -diagram the values of x , namely 0x ; 2x  and 167,1x  have been used.  
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The angle of relative twist 
dx

d   of dimension mrad /  is defined. θ  is a measure of 

shearing strains when the pure torsion conditions exist. cGI  is the stiffness of a beam working in pure 

torsion conditions. It is obvious the bigger stiffness the lower strain.  
When the shafts working in pure torsion conditions have been designed, the restriction about 

the strength as well as the stiffness must be satisfied. If the angle of relative twist   is big, then, it 
obstructs the work of the shafts. To prevent this phenomenon the restrictions about the relative twists 
are given. After that, the check of the real relative twist must be made with respect to the boundary 
value of the angle. Finally, if the check is not obtained, the dimensions of the shaft must be increased. 

 
9.6. STATICALLY INDETERMINATE BEAMS WORKING IN PURE TORSION 

CONDITION 
All of the beams considered earlier were statically determinate. They are fixed at one end and 

only the torsion moment is unknown reaction. It was determined by the condition that the sum of the 
moments about the beam axis to be equal to zero. Then, the method of section has been applied, the 
torsion moments functions for every segment have been written and the torsion moment diagram has 
been drawn. 
 In the case of statically indeterminate beam, i.e. the beam fixed in both ends, the solution is 
different.  Such beam is shown in fig.9.10. 

 
 
 
 
 
 

Fig. 9.10: Statically indeterminate beam working in pure torsion condition 
 

The beam contains two unknown torsion moments as reactions while the equilibrium equation 
is only one. If the number of the equilibrium equations is subtracted from the number of the unknowns, 
then, the degree of the statical indeterminateness will be obtained. In our case: two unknown torsion 
moments – one equilibrium equation = one time statically indeterminate problem. The problem is 
statically indeterminate externally. 
 To solve the problem the condition taking into account the type of the beam deformation must 
be introduced, namely the mutual twist of the beam sections А and С must equal to zero. It can be 
written in the manner: 

- If the segments of the beam have the same polar moment of inertia tI : 

0
0

2

0

1   dxTxdТ
ba

.                      (9.33) 

- If the segment AB  has the polar moment of inertia 1,tI , while the segment BC has 2,tI : 

 0
0

2
2,

1,

0

1   dxT
I

I
xdТ

b

t

t
a

.                     (9.34) 

 
 

Problem 9.6.  Build the torsion moment diagram of the beam shown. The left segment has 
solid circular cross-section of diameter 0,10m, while the right segment has hollow circular cross-

section of external radius 0,05m and the ratio between internal and external radius is 8,0
R

r . 

 a 

t TA 

bA 
B C x 

TC
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Fig. 9.10: Statically indeterminate beam 

 
First, the moment equilibrium equation about the beam axis is written: 

;0 xM 04.20TT CA  . 

According to (9.17) the polar moment of inertia is calculated: 45
4

1 10.4909,0
2

05,0.
mIt




. 

Further, in accordance with (9.21) the polar moment of inertia of the second segment is determined: 

  454
4

2 10.9817,0,080-1
2

05,0
mIt




. 

Then, the torsion moments functions of the two segments are obtained applying the method of 
section: 

ATT 1 ; xTT A 202  . 

After that, the condition (9.34) is used: 0)20()(
02,

1,

0

  dxxT
I

I
xdТ

b

A
t

t
a

A . The value of the 

unknown torsion moments is obtained after integration: kNmTA 43,11 .  
The torsion moments expressions of the two segments are: 

43,111 T ; 43,11202  xT . 
Finally, the torsion moment diagram is built.  
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