ЛАБОРАТОРНАЯ РАБОТА №10

ОСНОВЫ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Цель работы

Изучение основных показателей статистической обработки результатов эксперимента и проведение статистической обработки результатов механических испытаний

1 Теоретическая часть

Если в результате испытаний измеряют непосредственно изучаемую характеристику механических свойств, то такие испытания называют *прямыми* [1].

К прямым испытаниям относят кратковременные статические и динамические испытания с целью определения характеристик упругости, прочности, сопротивления пластическим деформациям, пластичности, твердости, ударной вязкости, а также длительные статические испытания и испытания на усталость с целью определения долговечности при фиксированных условиях испытания.

К *косвенным* испытаниям относят испытания на усталость с целью построения кривой усталости и определения предела выносливости, длительные статические испытания с целью построения кривой длительной статической прочности и определения предела длительной статической прочности и др.

Механические свойства материала и несущую способность конструкций обычно изучают путем испытаний ограниченного числа образцов. В связи с неоднородностью конструкционных материалов найденные таким образом числовые характеристики механических свойств в большей или меньшей степени отличаются от так называемых генеральных характеристик, которые могут быть определены по результатам испытаний бесконечно большого числа образцов. Эту неограниченно большую воображаемую совокупность образцов, которые могут быть выделены из исследуемого материала, называют генеральной совокупностью. Ограниченную совокупность образцов, являющуюся частью генеральной совокупности, называют выборкой, а значения характеристик, вычисленные по результатам испытания выборки – выборочными характеристиками (статистиками) или оценками генеральных характеристик.

Генеральные числовые характеристики механических свойств, параметры функций распределения являются детерминированными величинами, а их оценки — случайными. Разница в выбранных и генеральных характеристиках зависит от объема испытаний n и используемой методики статистического анализа их результатов.

Требования, предъявляемые к оценкам [1]:

- а) с увеличением объема выборки n оценка $\hat{\theta}$ должна приближаться (сходиться по вероятности) к генеральному значению числовой характеристики θ . Это значит, что вероятность события, заключающегося в непревышении разницы между оценкой и генеральной характеристикой $|\hat{\theta} \theta|$ сколь угодно малой величины ϵ , при увеличении объема выборки должна приближаться к единице: $P(|\hat{\theta} \theta| < \epsilon) \rightarrow 1$. Оценка, обладающая этим свойством, называется *состоятельной*;
- б) оценка не должна давать систематическую ошибку в сторону завышения или занижения числовой характеристики: $M\left\{\hat{\theta}\right\} = \theta$. Такую оценку называют *несмещенной*;
- в) оценка должна быть эффективной, т.е. обладать по сравнению с другими оценками наименьшей дисперсией $D\left\{\hat{\theta}\right\}=\min$.

При первичной обработке статистический материал, полученный в результате испытаний n объектов

$$X_{(1)}, X_{(2)}, ..., X_{(i)}, ..., X_{(n)},$$
 (1)

где $x_{(i)}$ – значение характеристики механических свойств образца под номером (i), взятое в порядке испытания, обычно представляют в виде вариационного ряда

$$x_1 \le x_2 \le \dots \le x_i \le \dots \le x_n. \tag{2}$$

Каждому полученному значению характеристики механических свойств может быть поставлена в соответствие накопленная частость события, заключающегося в том, что $x \le x_i$, т.е.

$$W(x) = \begin{cases} 0 \text{ для } x < x_1; \\ \frac{i}{n} \text{ для } x_i \le x \le x_{i+1}, i = 1, 2, 3, ..., n-1; \\ 1 \text{ для } x \ge x_n. \end{cases}$$
 (3)

Вариационный ряд (2) и соответствующие накопленные частности (3) образуют выборочное или эмпирическое распределение.

При **малом объеме выборки** (n < 50) выборочное среднее значение характеристики механических свойств

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n},\tag{4}$$

где x_i – значение характеристики отдельных образцов; n – объем выборки.

Выборочная медиана при нечетном объеме выборки n=2m-1 равна среднему члену вариационного ряда:

$$X_{0.5} = X_m, \tag{5}$$

при четном объеме n=2m

$$x_{0,5} = \frac{x_m + x_{m+1}}{2}. (6)$$

Выборочная дисперсия характеристики механических свойств определяется по формуле

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$
 (7)

ИЛИ

$$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right].$$
 (8)

Выборочное среднее квадратическое отклонение и выборочный коэффициент вариации определяют по формулам

$$s = \sqrt{s^2},\tag{9}$$

$$v = \frac{s}{\overline{x}}. (10)$$

Вычисление выборочных моментов третьего и четвертого порядка при объеме выборки n < 50 нецелесообразно в связи с их большими вероятными отклонениями от генеральных моментов.

Для нормально распределенной генеральной совокупности оценки (4), (7), (8) являются состоятельными, эффективными и несмещенными. Оценка (9) является состоятельной, эффективной, но смещенной. Несмещенная оценка среднего квадратического отклонения

$$s_1 = ks, \tag{11}$$

где k – поправочный коэффициент, значения которого приведены в табл. 1.

Параметры a и σ^2 нормального распределения — математическое ожидание и дисперсия случайной величины соответственно. Оценка параметра a совпадает с величиной \overline{x} ($\hat{a} = \overline{x}$), ее вычисляют по формуле (4). Аналогичное соотношение имеет место между оценкой параметра σ^2 и статистикой s^2 ($\hat{\sigma}^2 = s^2$), рассчитываемой по формуле (7).

В ходе механических испытаний может иметь место существенный разброс значений определяемых параметров. Рассеяние экспериментальных данных в основном определяется неоднородностью конструкционных материалов, однако в некоторых случаях оно заметно увеличивается вследствие изменения условий испытаний, больших погрешностей при замере габаритов образца и отсчета нагрузки. Если указанные отклонения от нормы отмечаются в процессе испытания, то результаты этих экспериментов следует исключить из дальнейшего анализа.

Таблица 1 Значение поправочного коэффициента k в зависимости от объема выборки n

n	k	n	k	n	k
2	1,253	11	1,025	20	1,013
3	1,128	12	1,023	25	1,010
4	1,085	13	1,021	30	1,008
5	1,064	14	1,019	35	1,007
6	1,051	15	1,018	40	1,006
7	1,042	16	1,017	45	1,006
8	1,036	17	1,016	50	1,005
9	1,032	18	1,015	55	1,004
10	1,028	19	1,014	60	1,004

Иногда причина резких отклонений опытных данных не обнаруживается во время проведения экспериментов, однако значение полученной механической характеристики отдельных образцов вызывает сомнение. В подобных случаях сомнительные результаты исключают путем применения специальных критериев.

Нулевой гипотезой при использовании критериев является предположение о том, что наибольшее значение x_n (или наименьшее x_1) принадлежит той же генеральной совокупности, что и все остальные n-1 наблюдений.

Критерий для отбрасывания при известной генеральной дисперсии. Использование рассматриваемого критерия возможно для нормально распределенной случайной величины при неизвестном математическом ожидании и известном значении генеральной дисперсии. Подобная ситуация встречается для тех характеристик механических свойств материала и деталей, которые контролируются при сдаче и приемке продукции.

Результаты испытаний анализируемой выборки представляют в виде вариационного ряда (2). По формуле (4) производят оценку математического ожидания. Далее, если сомнение вызывает первый член вариационного ряда, вычисляют статистику

$$t_1 = \frac{\overline{x} - x_1}{\sigma} \tag{12}$$

или

$$t_n = \frac{x_n - \overline{x}}{\sigma},\tag{13}$$

если сомнительным является последний член вариационного ряда, и сравнивают с критическим значением критерия t_{α} , взятым из табл. 2 для уровня значимости α и объема выборки n.

Если выполняется неравенство

$$t_1 \le t_\alpha \text{ или } t_n \le t_\alpha \tag{14}$$

то нулевая гипотеза не отклоняется, т.е. результат испытания x_1 или x_n не следует считать выбросом, и он должен учитываться, как и остальные n-1 результатов. При рассмотрении, например, свойств продукции разных заводов нулевая гипотеза заключается в предположении о независимости характеристик механических свойств профилей от уровня технологии производства.

В противоположном случае при

$$t_1 > t_\alpha$$
 или $t_n > t_\alpha$ (15)

нулевая гипотеза отклоняется, т.е. результат x_1 или x_n является ошибочным и должен быть исключен из дальнейшего анализа, а найденная ранее оценка математического ожидания должна быть скорректирована.

Критерий Н.В. Смирнова. Использование критерия Н.В. Смирнова также предполагает нормальное распределение изучаемой случайной величины. Критерий действителен для наиболее широко встречающихся случаев, при которых *генеральные параметры неизвестны*, а *известны лишь их оценки, произведенные на основании анализируемой выборки*.

Предварительно результаты испытаний выборки располагают в виде вариационного ряда (2). По формуле (4) производят оценку математического ожидания и по формуле (9) оценивают среднее квадратическое отклонение.

Далее вычисляют статистику

$$u_1 = \frac{\overline{x} - x_1}{s},\tag{16}$$

если сомнение вызывает первый член вариационного ряда, или

$$u_n = \frac{x_n - \overline{x}}{s},\tag{17}$$

если сомнителен максимальный член вариационного ряда, и сопоставляют с критическим значением u_{α} , взятым из табл. 4.3.2 для уровня значимости α и объема выборки n. При n>25 рекомендуется принимать $u_{\alpha}=t_{\alpha}$.

Если имеет место соотношение

$$u_1 \le u_\alpha$$
 или $u_n \le u_\alpha$ (18)

то нулевая гипотеза не отклоняется, т.е. результат испытания первого или последнего образца не следует считать резко выделяющимся, и он должен учитываться, как и остальные n-1 результатов.

В случае, если

$$u_1 > u_\alpha$$
 или $u_n > u_\alpha$ (19)

нулевая гипотеза отклоняется, т.е. выброс x_1 или x_n не случаен, не характерен для рассматриваемой совокупности данных, а определяется грубыми ошибками при испытании. В этом случае значение характеристики механических свойств x_1 или x_n исключают из рассмотрения, а найденные ранее оценки \overline{x} и s подвергаются корректировке с учетом отброшенных результатов.

 ${f T}$ аблица ${f 2}$ ${f K}$ ритические значения ${f t}_{a}$ и ${f u}_{a}$

n		t_{α}			u_{α}				
	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.01$	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.01$			
3	1,50	1,74	2,22	1,15	1,15	1,15			
4	1,70	1,94	2,43	1,42	1,46	1,49			
5	1,84	2,08	2,57	1,60	1,67	1,75			
6	1,94	2,18	2,68	1,73	1,82	1,94			
7	2,02	2,27	2,76	1,83	1,94	2,10			
8	2,09	2,33	2,83	1,91	2,03	2,22			
9	2,15	2,39	2,88	1,98	2,11	2,32			
10	2,20	2,44	2,93	2,03	2,18	2,41			

11	2,24	2,48	2,97	2,09	2,23	2,48
12	2,28	2,52	3,01	2,13	2,29	2,55
13	2,32	2,56	3,04	2,17	2,33	2,61
14	2,35	2,59	3,07	2,21	2,37	2,66
15	2,38	2,62	3,10	2,25	2,41	2,70
16	2,41	2,64	3,12	2,28	2,44	2,75
17	2,43	2,67	3,15	2,31	2,48	2,78
18	2,46	2,69	3,17	2,34	2,50	2,82
19	2,48	2,71	3,19	2,36	2,53	2,85
20	2,50	2,73	3,21	2,38	2,56	2,88
21	2,52	2,75	3,22	2,41	2,58	2,91
22	2,54	2,77	3,24	2,43	2,60	2,94
23	2,56	2,78	3,26	2,45	2,62	2,96
24	2,57	2,80	3,27	2,47	2,64	2,99
25	2,59	2,82	3,28	2,49	2,66	3,01
30	2,70	2,93	3,40			
40	2,79	3,02	3,48			
50	2,86	3,08	3,54			
100	3,08	3,29	3,72			
250	3,34	3,53	3,95			
500	3,53	3,70	4,11			

При **большом объеме выборки** (n > 50) необходимо систематизировать исходные данные, что невозможно при n < 50. Сначала определяется *размах варьирования* по формуле

$$R = x_{\text{max}} - x_{\text{min}} = x_n - x_1 \ . \tag{20}$$

Всю выборку при n > 80 делят на $7 \div 20$ равных интервалов [1].

Выборочное среднее значение характеристики механических свойств в этом случае определяется по формуле

$$\overline{x} = \frac{\sum_{j=1}^{e} x_j n_j}{n},\tag{21}$$

где x_j – значение характеристики механических свойств в середине j – го интервала; n_j – число наблюдений в j – м интервале; e – число интервалов; n – объем выборки.

Выборочная дисперсия характеристики механических свойств определяется по формуле

$$s^{2} = \frac{1}{n-1} \sum_{j=1}^{e} n_{j} \left(x_{j} - \overline{x} \right)^{2}$$
 (22)

или

$$s^{2} = \frac{1}{n-1} \left[\sum_{j=1}^{e} n_{j} x_{j}^{2} - \frac{1}{n} \left(\sum_{j=1}^{e} n_{j} x_{j} \right)^{2} \right].$$
 (23)

Группировка данных приводит к некоторым неточностям расчета \overline{x} и s^2 , однако этой неточностью можно пренебречь при $e \ge 7$.

Выборочное среднее квадратическое отклонение и выборочный коэффициент вариации определяют по аналогичным формулам без поправки на смещение

$$s = \sqrt{s^2},\tag{24}$$

$$v = \frac{s}{\overline{x}}. (25)$$

В тех случаях, когда необходимо произвести анализ асимметрии выборки, предварительно находят выборочные начальные моменты распределения:

$$h_{1} = \overline{x} = \frac{1}{n} \sum_{i=1}^{e} x_{i} n_{j}, \tag{26}$$

$$h_2 = \frac{1}{n} \sum_{j=1}^{e} x_j^2 n_j, \tag{27}$$

$$h_3 = \frac{1}{n} \sum_{i=1}^{e} x_j^3 n_j, \tag{28}$$

$$h_4 = \frac{1}{n} \sum_{i=1}^{e} x_j^4 n_j, \tag{29}$$

Затем вычисляют выборочные центральные моменты:

$$m_3 = h_3 - 3h_2h_1 + 2h_1^3, (30)$$

$$m_4 = h_4 - 4h_3h_1 + 6h_2h_1^2 - 3h_1^4. (31)$$

После этого находят показатели асиметрии и эксцесса выборки:

$$\hat{S}_k = \frac{m_3}{\varsigma^3},\tag{32}$$

$$\hat{E}_k = \frac{m_4}{s^4} - 3. \tag{33}$$

Критерии для отбрасывания заведомо неверных результатов эксперимента при большой выборке аналогичны рассмотренным ранее.

2 Практическая часть

Были произведены испытания композитных образцов на растяжение. Композиционный материал «углерод-магний» представляет собой однонаправленный композит, состоящий из углеродных нитей и магниевой матрицы. Пропитка углеродных нитей расплавленным магнием производилась вакуумным методом под давлением 1,5 МПа. Коэффициент армирования составлял 0,3. Образцы имели форму лопатки (рис. 1). Испытания проводились на разрывной машине FP-10 с максимальным усилием $10~\mathrm{kH}$. Скорость деформирования — $2~\mathrm{mm/muh}$. Результаты испытаний представлены в таблице. Вид образцов после испытаний показан на рис. 2-4.

Рис. 1. Фотографии образцов до испытаний

Протов	Протокол испытаний композиционных материалов на основе углеродных волокон и магниевой матрицы с коэффициентом армирования $\psi = 0,3$									
№ обр	Ширина b ,	Толщина <i>h</i> , мм	A , MM^2	$F_{ ext{\tiny MAKC}}$,	$\sigma_{_{\Pi^{\mathrm{H}}}}=rac{F_{_{\mathrm{MAKC}}}}{A},$ M Π a	Примечание				
11	4,5	1,75		3250		Сдвиг				
12	4,8	1,75		2600		-				
13	4,9	1,75		2300		-				
14	4,9	1,75		2550		Трещина				
15	5,00	1,75		1850		Трещина				
16	5,25	1,8		1850		1				
21	5,3	1,75		3550		-				
22	5,1	1,75		3450		Треснул в захвате				
23	4,95	1,75		4000		•				
24	5,1	1,8		4300		•				
25	5,3	1,75		5050		•				
26	5,4	1,75		5250		-				
31	5,3	1,75		1250		-				
32	5,55	1,75		1300		-				
33	5,1	1,8		1200		-				

Необходимо рассчитать прочность углемагниевых образов на разрыв и произвести статистическую обработку результатов механических испытаний согласно п. 1. В случае необходимости произвести исключение заведомо ложных результатов. По окончанию обработки представить выводы.

Рис. 2. Образцы после механических испытаний: сдвиговое разрушение

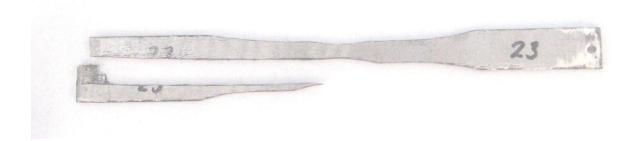


Рис. 3. Образцы после механических испытаний: разрушение в захвате

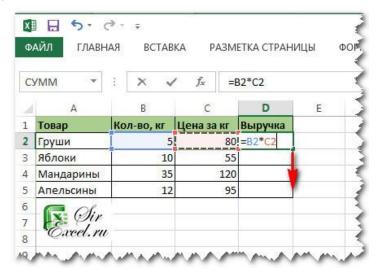
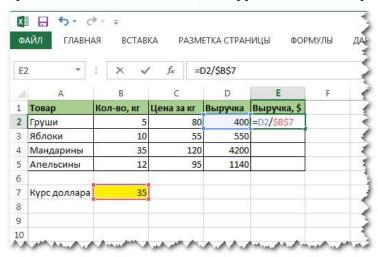


Рис. 4. Образцы после механических испытаний: комбинированное разрушение


3 Некоторые тонкости работы в программе Microsoft Excel

1 Для того чтобы рассчитать формулу в Excel, необходимо сначала нажать знак «=», а затем уже с помощью левой кнопки мышки (ЛКМ) выбирать те ячейки, которые будут

участвовать в формуле; знаки «+», «-», «*», «/» и др. вводятся с помощью клавиатуры; после окончания ввода необходимо нажать «**ENTER**».

2 Для того, чтобы зафиксировать ячейку в формуле в Excel, необходимо установить значок \$ перед номером строки и столбца той ячейки, которую Вы хотите зафиксировать.

3 Для того, чтобы рассчитать минимальное и максимальное значение выборки, следует воспользоваться функциями =**MUH(...)** и =**MAKC(...)** соответственно.

				· /	` '			
<i>f</i> ∗ =MAK	C(B312:B3	59)						
D	Е	F	G	Н	I	J	K	L
0,194475		0	0,01 0	,02 0,03 0,	04 0,05 0	,06		
0,180932								
0,159202	E	E	8,517888					
0,151796	(G	0,310414					
0,130236								
0,360777	r	максимул	Λ					9,9
0,274306	r	минимум						2,4
0,253491	C	среднее з	вначение					5,8
0,23748	C	среднее л	линейное	отклонение				1,538328
0,196473	Į	дисперси	я по генер	альной совоку	пности			3,370289
0,18029	Į.	дисперси	я по генер	альной совоку	пности			3,441997
0,220219	C	среднекв	адратично	е отклонение	генеральной	совокупнос	ти	1,835835
0,17212	C	среднекв	адратично	е отклонение	выборки			1,855262
0,148533	H	коэффици	ент вариа	ции генеральн	юй совокупно	ости		31,47%
0,134469	H	коэффици	ент вариа	ции выборки				31,81%

4 Среднее значение выборки определяется с помощью функции = СРЗНАЧ(...)

<i>f</i> _∞ =CP3H.	АЧ(В312	:B359)								
D	Е	F	G	Н		T		J	K	L
0,194475		0	0,01	0,02 0,03	0,04	0,05	0,0	06		
0,180932										
0,159202		E	8,517888							
0,151796		G	0,310414							
0,130236										
0,360777		максимул	И							9,9
0,274306		минимум								2,4
0,253491		среднее з	вначение							5,8
0,23748		среднее л	линейное	отклонение						1,538328
0,196473		дисперси	я по генер	альной сово	купн	юсти				3,370289
0,18029		дисперси	я по генер	альной сово	купн	юсти				3,441997
0,220219		среднекв	адратично	е отклонен	ие ге	неральн	ой с	овокупно	сти	1,835835
0,17212		среднекв	адратично	е отклонен	ие вь	борки				1,855262
0,148533		коэффици	иент вариа	ции генера	льноі	й совокуг	тно	сти		31,47%
0,134469		коэффици	иент вариа	ции выборк	и					31,81%

- 5 Для определения дисперсии в EXCEL используются следующие функции:
- 1) ДИСП.В Возвращает дисперсию по выборке. Логические значения и текст игнорируются.
- 2) **ДИСП.Г** Возвращает дисперсию по генеральной совокупности. Логические значения и текст игнорируются.
- 3) **ДИСПА** Возвращает дисперсию по выборке с учетом логических и текстовых значений.
- 4) **ДИСПРА** Возвращает дисперсию по генеральной совокупности с учетом логических и текстовых .

D	Ε	F	G	Н	1	J	K	L
0,194475		0	0,01 0	,02 0,03 0,0	04 0,05 0,	,06		
0,180932								
0,159202		E	8,517888					
0,151796		G	0,310414					
0,130236								
0,360777		максиму	М					9,
0,274306		минимум	1					2,
0,253491		среднее	значение					5,
0,23748		среднее	линейное	отклонение				1,53832
0,196473		дисперси	я по генер	альной совоку	пности			3,37028
0,18029		дисперси	я по выбор	оке				3,44199
0,220219		среднек	вадратично	е отклонение	генеральной	совокупнос	ти	1,83583
0,17212		среднек	вадратично	е отклонение	выборки			1,85526
0,148533		коэффиц	иент вариа	ции генеральн	ой совокупно	сти		31,479
0,134469		коэффиц	иент вариа	ции выборки				31,819

6 Среднее квадратичное отклонение выборки определяется с помощью функции **=СТАНДОТКЛОН.В(...)**

f _x =CTA	ндоткло	DH.B(B312:E	3359)							
D	Е	F	G		Н		- 1	J	K	L
0,194475		0	0,01	0,02	0,03 0,	,04	0,05	0,06		
0,180932										
0,159202		E	8,517888	8						
0,151796		G	0,310414	4						
0,130236										
0,360777		максимум							9,9	
0,274306		минимум								2,4
0,253491		среднее з	начение							5,8
0,23748		среднее /	тинейное	откл	онение					1,538328
0,196473		дисперси	я по гене	ралы	ной совоку	/ПНО	ости			3,370289
0,18029		дисперси	я по выбо	рке						3,441997
0,220219		среднекв	адратичн	ое от	клонение	ген	еральной	і совокупно	сти	1,835835
0,17212		среднекв	адратичн	ое от	клонение	выб	борки			1,855262
0,148533		коэффици	ент вари	ации	генералы	ной	совокупн	ости		31,47%
0,134469		коэффици	ент вари	ации	выборки					31,81%

6 Коэффициент вариации выборки определяется по формуле (10)

	/L332									
D	Е	F	G	Н		1		J	K	L
0,194475		0	0,01 0	,02 0,03	0,04	0,05	0,0)6		
0,180932										
0,159202		E	8,517888							
0,151796		G	0,310414							
0,130236										
0,360777		максимум								9,9
0,274306		минимум								2,4
0,253491		среднее з	начение							5,8
0,23748		среднее л	инейное	отклонен	ие					1,538328
0,196473		дисперсия	по генер	альной со	вокуп	ности				3,370289
0,18029		дисперсия	по выбор	рке						3,441997
0,220219		среднеква	адратично	е отклон	ение ге	неральн	ой с	овокупно	сти	1,835835
0,17212		среднеква	адратично	е отклон	ение в	ыборки				1,855262
0,148533		коэффици	ент вариа	ции генер	оально	й совокуг	пнос	ти		31,47%
0,134469		коэффици	ент вариа	ции выбо	рки					=L337/L33

Контрольные вопросы:

- 1) Основные параметры, определяемые при статистической обработке результатов механических испытаний.
- 2) Чем отличается генеральная совокупность от выборки при механических испытаниях?
- 3) Суть критериев для отбрасывания заведомо неверных результатов эксперимента.

Список литературы:

1) Степнов М.Н. Статистические методы обработки результатов механических испытаний: Справочник. – М.: Машиностроение, 1985. – 232с., ил.